
' V. .
NAT' INST. OF STAND & TECH

Reference
NBS

PUBLICATIONS III millin
AlllOb 2bl757

NBSIR 83-2794

On Generalizing the D-Algorithm

Center for Applied Mathematics

National Engineering Laboratory

U.S. Department of Commerce
National Bureau of Standards

Washington, D C. 20234

Revised September 1983

Sponsored by:

Center for Applied Mathematics
Center for Electronics and Electrical Engineering
National Engineering Laboratory
U.S. Department of Commerce
Washington, D C. 20234

-QC

100

. U 5 6

83-2794

1983

jJIATIONAL BUREAU
.OF STANDARDS
\ LIBRARY

NBSIR 83-2794

ac
ON GENERALIZING THE D-ALGORITHM / oo

J. Scott Provan*

Paul Domich

,

c/S(p

'23-27W
HZ3
C, I

Center for Applied Mathematics

National Engineering Laboratory

U.S. Department of Commerce
National Bureau of Standards

Washington, D.C. 20234

Revised September 1983

Sponsored by:

Center for Applied Mathematics

Center for Electronics and Electrical Engineering

National Engineering Laboratory

U.S. Department of Commerce
National Bureau of Standards

Washington, D. C. 20234

*While performing this research in FY 1982, Provan was an NRC/NAS
Postdoctoral Research Associate.

2
"P

c
o
1*

<4

Q

J

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

ABSTRACT

We consider in this paper the d-algorithm of J. P. Roth, which tests for

specific faulty behavior in an integrated circuit. We develop a formal and

general mathematical description of the algorithm, which allows a large degree

of flexibility and extension in its implementation. We discuss a subsequent

FORTRAN coding of such an extended d-algorithm, along with some sample

testing.

Table of Contents

Page

1. Introduction 1

1.1 Circuit diagrams 3

1.2 Faults and test-vectors

1.3 Purpose and history of the d-algorithm 11

2. The Conventional d-Algorithm 16

2.1 Backtrack algorithm 17

2.2 Cubes and signals 21

2.3 Description of the d-algorithm 26

2.4 Example 31

3. Generalization of the d-Algorithm 39

3.1 Nonclassic and simultaneous faults 40

3.2 Finding faults which are detectable by a given test 47

3.3 General cubes 49

4. Implementation of a Generalized d-Algorithm 56

4.1 Ordering, schemes for gate processing 58

4.2 Component formation 61

4.3 Data structures for d-cubes 63

References 65

Appendix: Sample Output 71

ii

1 . Introduction

The advent of very large scale integrated circuits (VLSI) has intensified the

interest in all aspects of testability, including test generation, self-

testing, and testability measures, as well as the impact of these on design

for testability and reliability of VLSI's. This report deals with a special

aspect of test generation which is often referred to as "fault specific" test

generation. By this we mean a procedure which generates — for a specific

circuit and a suspected single malfunction or "fault" associated with that

circuit — a test which detects the absence or presence of that malfunction in

the circuit. The main tool for fault-specific test generation continues to be

the d-algorithm. Developed by Roth in 1966 [19], the d-algorithm has been the

target of continual development over the succeeding twenty years since its

introduction.

This is a report on work of the Operations Research Division in developing a

formal and general mathematical description of the d-algorithm, in designing a

more flexible version based on this formalism, and in a subsequent FORTRAN

implementation of this algorithm. The algorithmic scheme permits the handling

of a very general type of circuit logic geared towards broader levels of

circuit descriptions and analysis. It allows the coalescing of groups of

components into a single gate, permits description of general fault logic, and

allows handling of nonclassical and simultaneous types of faults. The flow of

the algorithm itself can be brought partly under control of the user. This

provides flexibility in testing specific types of circuits and generally

allows for an improvement in the efficiency of the algorithm. Finally,

1

the same algorithm which is used to generate test vectors for a circuit can be

used to check a test vector efficiently in order to determine which faults it

can detect. This feature is very useful when it is desired to find a set of

test vectors which "cover" a given set of faults. Although the code as it

stands is restricted essentially to digital nonsequential circuits, the tools

developed up to this point show every indication of being applicable to fault

detection in more general devices.

Section 1 gives a description of circuit faults and fault detecting

algorithms
,
and provides a brief summary of work which has been done in the

area. Section 2 describes the conventional d-algorithm in detail and develops

general terminology used in Section 3. Section 3 describes the ways in which

the description given in Section 2 can be generalized to include nonclassical

faults and more general search techniques, and Section 4 describes aspects of

the computer implementation of the generalized d-algorithm. The appendix

describes a particular version of the d-algorithm which was implemented in

FORTRAN at the Bureau of Standards, and includes some sample output.

2

1 . 1 Circuit Diagrams

Conventional versions of the d-algorithm address digital nonsequential

(memory-less) circuits. The description of such a circuit involves two

entities

—

lines , which carry 1-0 (high-low) signals between points of the

circuit; and gates which process or generate signals on lines adjoining them.

Each gate has input and output lines, along with an explicit description of

the signals on the output lines of that gate which result from a specified set

of signals on the input lines. Each line goes from the output of a single

source gate to the inputs of one or more receiving gates, and indicates that

the signal produced by the source gate is to be the corresponding input to the

receiving gates. The entire circuit has special gates called input and output

gates. A user of that circuit is able to control the circuit only through the

sets of signals given to the input gates -called input vectors- and is able to

observe the circuit only through signals -called output vectors- emanating

from the output gates. Since the circuit has no memory, each gate description

is independent of previous history of gate operation, and the gates and lines

admit no "feedback," that is, no path of signals returns to a point previously

visited. (This is what is meant by being nonsequential.) It follows that for

any set of circuit inputs there is a well defined sequence for gate processing

producing the unique set of circuit outputs which results from applying these

inputs. It is possible to extend the description to include memory and

feedback, although that problem is not addressed in this paper.

3

As an example circuit, we consider the "one-bit adder." It can be described

simply as a circuit whose inputs are two one-bit binary numbers, and whose

output is a two-bit binary number representing the sum of the inputs. One

circuit which functions as a one-bit adder is shown in Figure 1.1. The gates

are of five types and are interconnected with lines as shown. Input lines

always enter on the left of the gate and output lines leave on the right. The

gates marked "input" and "output" have no function other than to apply given

inputs or to record the appropriate outputs. The remaining gates are

processing gates and process inputs as their name indicates. Thus, a "not”

gate simply reverses the input signal from 0 to 1 or from 1 to 0, the "or”

gate produces a 1 output if at least one input has value 1, 0 otherwise, and

the "and" gate produces a 1 output if both inputs have value 1, 0 otherwise.

Of course, the output of these gates depends entirely on the values of the

inputs. Further, it is not possible to travel progressively from gate to gate

by traversing lines from output to input and return to a point previously

visited. Thus, by processing the gates 1 through 5 in the order given, we

obtain for any given set of inputs the unique set of outputs which corresponds

to the two-bit sum of those inputs. We note, of course, that there may be

many circuits which yield the same function as the circuit of Figure 1.1 but

whose circuit description is essentially different. Figure 1.2 shows one of

these circuits. This circuit is made up entirely of "nand" gates, whose

function is exactly opposite that of the "and" gate. Clearly, both the gate

description of the circuit and the actual physical layout of this circuit on a

chip can affect the functioning of the circuit and the types of faults which

can be expected to occur when operating such a circuit.

4

O* 1—f

5

o
<8

6

1.2 Faults and Test Vectors

A fault is any change in the internal structure of a circuit which affects the

normal functioning of that circuit. In order that we have a demonstrable

method of detecting faults in a circuit, we insist that a fault, when it

occurs, has a well-defined and consistent functional effect on the gates and

lines associated with it. Thus, for example, "intermittent" faults—that is,

faults which occur at random times in circuit operation—are not considered

here. One can, in fact, think of a fault as being a "pseudogate" in the

circuit which processes lines and/or replaces gates in the system. This

pseudogate, unlike normal gates, functions in one of two "modes”— the first

corresponding to the normal functioning of the circuit and the second

corresponding to the functioning of the circuit when the fault occurs. The

mode in which the pseudogate functions, of course, is unknown to the user,

except when it causes a discrepency in the outputs from the normal function of

the circuit.

As examples, we describe two types of faults which occur naturally in

connection with physical malformation of circuits, namely, the stuck-at faults

and the cross-wire faults. The classified faults previously studied are the

stuck-at faults which correspond to breaks or shorts in a line and have the

effect of producing a constant signal at the terminal of the line regardless

of the signal impulse at the beginning of the line. We, therefore, can speak

of stuck-at-1 faults and stuck-at-Q faults. They can be described by placing

on the line a pseudogate with one input and one output, which under normal

operating mode simply passes the proper signal through and under fault mode

7

outputs a constant 1, or respectively an 0, regardless of the input (see

Figure 1.3).

A cross-wire fault, (or bridging fault) as its name implies, occurs when two

wires in close proximity inadvertently relay signals to each other. A

cross-wire "and" fault occurs when a low (0) signal dominates a high (1)

signal. The result can be described by placing on the two lines a pseudogate

with two inputs and two outputs which under normal operating mode simply

passes the respective signals through, and under fault mode outputs to both

lines the signal corresponding to the "and" of the inputs (see Figure 1.4). A

cross-wire "or" fault occurs when the high signal dominates the low signal,

and the corresponding pseudo-gate described above acts in fault mode as an

"or" gate.

The types of faults described above represent some of the standard types of

faults which might occur on a circuit. They are, furthermore, "local" faults

in the sense that they affect a relatively small number of signals in a small

area of the circuit. One can imagine more complicated types of faults. A

simultaneous fault, for example, consists of several individual faults

occurring simultaneously in different parts of the circuit, and this often

requires substantially different test finding procedures than simply testing

for the faults individually. Other faults may involve certain complex types

of gate malfunctions which have been observed only empirically and are

described primarily by example. More general classes of faults will be

discussed later in the paper.

8

stuck-at-1 fault stuck-at-0 fault

0 X 0

normal mode

fault mode

1 X 1

normal mode

fault mode

Figure 1.3 : The stuck-at faults

; 5

7

/

normal

\

\

mode

/

)

/

/

fault

\

mode

0

1

0

0

Figure 1.4 : The cross-wire "and" fault

9

A test vector for a circuit and associated fault is an input vector whose

output vector in the fault mode is different in at least one output from the

output vector in the normal mode of circuit operation. A test vector, then,

distinguishes the case when that fault occurs and no other from the case where

no fault occurs. This is what is meant, in this report by the term "detects

the fault."

The simultaneous fault concept allows one to distinguish the occurrence of

several individual faults occurring simultaneously from the case where none of

the faults occur.

A testing scheme for a circuit will consist of a set of test vectors applied

to a circuit which will be able to detect any of a given set of faults. Since

these faults may occur in any number of simultaneous combinations, the scheme

should ideally be able to test not only each individual fault, but any subset

of faults occurring simultaneously, and should further more be able to

isolate which of the set of faults are occurring in any specific malfunction.

The construction of such a testing scheme is beyond the scope of this paper.

Henceforth we are interested in simply producing a test vector which will

identify a given specific malfunction in the circuit, and no other. It will

turn out that this problem alone is difficult enough for an entire report.

10

1.3 The d-Algorithm: Description and History

The general goal of the d-algorithm is: given the description of an

integrated circuit and a fault which can be expected to occur on the circuit,

find a test vector, for the circuit which detects the occurrence of this fault

in terms of discrepancies in the outputs elicited from the circuit.

Specifically, given a circuit description with a fault pseudogate (or set of

simultaneous fault pseudo-gates), a given set of inputs detects the given

fault if the outputs obtained when the pseudogate (or all pseudogates) are

operating under fault mode differ from the corresponding outputs obtained when

the pseudogate (or all pseudogates) are operating under normal mode.

It is clear that any digital nonsequential circuit can be tested completely by

applying all possible inputs and observing the corresponding outputs for dis-

crepencies between normal and fault mode operations. This is dependent only

on the functional description of the circuit and detects all possible faults

which affect the correct functional operation of the circuit. For large

enough circuits, however, the number of such inputs would far exceed any

reasonable amount of testing time alloted for the circuit. A method is needed

for efficiently designing tests for certain "key" faults expected to occur in

the circuits. One property that such an algorithm must take advantage of is

the local nature of most circuit faults. In particular, the algorithm should

be able to design a test for a fault by beginning at the fault site or sites

and working towards the extremities (inputs and outputs) for the circuit.

11

Such algorithms naturally proceed in two stages: the propagation (or

observational) stage, which insures that the fault can be seen as a

discrepency in the outputs, and the justification (or generation) stage, which

insures that there exist inputs which are consistent with the fault

propagation found during the first stage.

The first attempt at such an algorithm, based on results by R. D. Eldrid [10]

and unpublished work by Steiglitz and Armstrong, is the path sensitization

method of fault detection. Path sensitization is used primarily for stuck-at

faults on circuits made up of simple logic gates (such as and, or, not, nand,

and nor). The object of the algorithm is to construct a "sensitized path”

from the fault to a circuit output and subsequently derive inputs which

support such a path. It is based on the fact that for each gate of the above

type and each input line to be "sensitized," there is a unique signal which

can be placed on the other input line (if any) which allows the input signals

on the sensitized line to be distinguished by the signal on the output line.

For an "or" gate, as an example, a given input can be distinguished at output

by placing an "0" signal on the other input. The output value then exactly

matches the signal of the sensitized line. Note that if "1” signal is placed

on the other input, the gate output registers "1" regardless of the signal of

the sensitized input, and so this configuration cannot pass through a

sensitized input. For a "nand" gate (one whose output registers the opposite

of the "and" of its inputs) and given input to be distinguished, placing a "1"

on the other input allows it to be distinguished at the output. The output

here registers the opposite signal to the input, but can nonetheless

distinguish the signal on the given input.

12

The path sensitization algorithm starts at the stuck-at fault by fixing a

value to the line which will distinguish the fault mode operation on that line

from the normal mode operations—specifically, a 1 signal for a stuck-at-0

fault and a 0 signal for a stuck-at-1 fault. It then proceeds to construct a

sensitized path from the fault to a circuit output by setting the unused input

at each successive gate to the proper sensitizing value. The consequence of

sensitizing such a path is that now the change in the line signal resulting

from a fault is able to propagate through succession lines in the path until

it is registered at the output gate as the opposite signal from the normal

signal expected for that output. In fact, it follows that a sensitized path

will register the appropriate stuck-at fault on any line of the path and thus

the construction of long sensitized paths is an efficient way of detecting a

large number of faults by a small number of tests. If, after the sensitized

path has been constructed, the inputs can be assigned values which are

consistent with (that is, produce the correct values for) the lines assigned

in producing the sensitized path, than these input values constitute a test

vector for the fault.

Two problems need to be resolved concerning the path sensitization algorithm

as described above. The first is a procedural one, namely, how to structure

the search for a sensitized path and subsequently justifying inputs. A search

must, in particular, be efficient in searching for or discarding conditions

for sensitized paths and input values, and at the same time insure that an

exhaustive search has been made for such a path. A second and more

fundamental problem is that certain faults may not be able to be tested by a

single sensitized path (See Subsection 2.4). This is especially true of

13

simultaneous faults or non-classical faults such as the cross-wire faults, but

is true of single line faults as well. A complete propagation/justification

type algorithm must therefore be able to "sensitize” an arbitrary number of

lines of a circuit in order to be able to do a complete search for test

vectors for a fault.

Both problems were effectively answered by Roth [19] with a procedure known as

the d-algorithm . The d-algorithm can be thought of as a multi-path

sensitization algorithm, although the description must be more elaborate and

the record keeping mechanisms more sophisticated. It has the further property

that it either finds a test vector for the given fault or demonstrates that

the fault is undetectable , that is, that no input values are capable of

registering a discrepency in any of the outputs as a result of the presence of

that particular fault. Roth’s work provides both a way of describing the

action of a fault on a circuit and a effective method of manipulating the

operation of the circuit in order to find the appropriate input values. It

has therefore been an invaluable seminal paper for research in the field of

circuit reliability. Section 3 describes some of the methods used to speed up

the search and processing so as to make the test generation as efficient as

possible.

A great deal of research has been done in the area of circuit testing

following the Roth paper. A good sample of the directions this research took

is found in [36], A.s an indication of the amount of interest in the field, we

refer the reader to twelve annual IEEE Conferences on Fault-Tolerance

Computing [45] -[56], nine issues of IEEE Transactions on Computers devoted to

f ault-tolerent computing [36] -[44], several books on the subject [32] -[36],

14

and lists of compiled literature [16], [26], Some specific extensions of

Roth’s work include: structural factors in fault diagnosis [1], [2], [23],

multiple fault diagnosis [3], [5], [7], [9], sequential circuit testing [21],

fault location and coverage [6], [14], [31], and more general circuit and

fault models [4], [10], [17], Recent work has tended to be in the areas of

design for reliability and testability [1], [8], [12], [13], [30], and tests

for specific types of circuits [11], [12], [18], [27], [28], whereas and

relatively little research has been devoted to further development of fault-

specific test generation algorithms [20], [21], [22], This is partly due to

the fact that the problem of fault-specific test generation has a large degree

of inherent intractibility . Another reason, however, is that an understanding

of the d-algorithm has remained relatively inaccessible to the general

scientific community. This is due partly to the fact that the d-algorithm has

never been presented in a general mathematical format and papers have retained

machinery and terminology specific to the task of fault-specific test gen-

eration in combinatorial circuits. This is unfortunate, for the d-algorithm

concept has great potential for use in more general types of electronic fault-

testing as well as for applications to system maintenance and reliability out-

side the electronics industry. It is with these thoughts in mind that we

attempt to present the d-algorithm in a more general setting, one which, we

hope, will encourage it to be put to use in a wider scope than it has been in

the past.

15

2. The Conventional d-Algorithm

In this section we give a more specific description of the d-algorithm as it

is commonly implemented at the present time. Our description will stress a

formal structure of the algorithm and will be in a form appropriate for

generalization in Section 3.

Subsection 2.1 introduces a general search procedure known as the "backtrack

algorithm," which is found as an underlying principle in a large number of

combinatorial algorithms which require exhaustive searches.

Subsection 2.2 deals with a description of gate and fault functions which

allows implementation of the propagation and justification formats described

in Section 1.

Subsection 2.3 combines the concepts of Subsections 2.1 and 2.2 in presenting

a specific description of the d-algorithm, with an example in Subsection 2.^.

16

2.1 Backtrack Algorithms

A "backtrack algorithm" describes a general search technique for exhaustively

considering a sequence of alternatives in order to achieve a desired solution.

The goal of a backtrack algorithm in any application is to discard undesirable

alternatives as quickly as possible while still maintaining a complete search

among all of the available alternatives. The general format for a backtrack

algorithm involves a set of decision points which are usually encountered in a

fixed order and at which the algorithm must choose among one or more

alternatives. The alternatives are provided by a decision list available at

each decision point. Any backtrack algorithm proceeds from decision point to

decision point, choosing the first available alternative on each decision

list. If at any decision point the alternative chosen is found to be

inconsistent, with the alternatives chosen at previous points —that is, the

set of alternatives chosen thus far cannot possibly yield the desired solution

—then the next alternative on the decision list is considered. If a decision

list is exhausted so that _no alternative at that point is consistent with the

alternatives chosen at previous points, then the algorithm backtracks to a

previous decision point and chooses the next available alternative in the

decision list for that point. If a set of alternatives is found, one for each

decision point, which gives the desired solution, then the algorithm stops and

exhibits such a solution. If the algorithm completes the entire search, that

is, finally exhausts the decision list at the very first decision point, then

the algorithm has covered every possible choice of alternatives for all

decision points and therefore no solution exists to the problem. Figure 2.1

gives a flow chart for the general backtracking algorithm.

17

Figure 2.1: A general backtrack algorithm

We now give a broad description of the backtracking mechanism inherent in the

d-algorithm, the details of which will be related in succeeding subsections.

The decision points are the gates of the circuit (including pseudogates

associated with faults), and the decision list associated with each gate is an

assignment of "values” to the lines adjacent to that gate. The format of the

decision list is called a cube for the gate, and it is explained in Subsection

2.2. The algorithm "processes" gates in some order, that order to be

explained in Subsection 2.3 and in more detail in Section 3 and 4. At each

gate, a set of line values is chosen for that gate which satisfies:

(1) it is consistent with the logical function of that gate;

(2) it is consistent with decisions made at previous gates, in that the line

values chosen agree with the line values of every other gate on that line.

If the algorithm can find a set of values which satisfies these criteria, then

it moves on to process the next gate. If it cannot find an acceptable set of

values, then it backtracks to the previous gate considered and continues

processing this gate. If a set of line values is chosen for all gates which

is consistent from gate to gate and detects the given fault, then the

algorithm stops and produces the test vector. If the decision list is

exhausted for the first gate processed, then the algorithm stops and no set

of inputs can detect the fault.

A backtrack algorithm may have to consider an enormous number of alternatives

before it can ascertain whether or not a test vector exists for a circuit

19

fault. In particular, if every possible sequence of decisions is considered

the algorithm would have to test as many alternative sequences as the product

of the lengths of the decision lists for every decision point. For example,

if a backtrack algorithm had twenty decisions to make consisting of two

alternatives each, as many as 2^, Qr approximately one million possibilities

would have to be considered. The most important property of a good backtrack

algorithm is the ability to discern at the earliest possible decision point

when a sequence of alternatives is inconsistent with the desired solution.

This may depend on features such as the order in which decision points are

considered, the order in which the decision lists are scanned, and even the

types of decisions which are made at each point. Subection 2.3 and Section 4

will address some of the methods which were considered in this study to

improve the efficiency of the backtrack algorithm when applied to test

generation and the d-algorithm.

20

2.2 Cube and Fault Propagation

We now describe more precisely the structure of the decision lists, or

"cubes," associated with each gate. A cube is simply an assignment of line

values to lines adjacent to the gate which is consistent with the logical

function of the gate. Cubics are of two types; logic cubes and d~cubes . A

logic cube defines the basic logical structure of the gate and does not have

any bearing on fault propagation in the system. It is associated with a

logical type rather than a particular gate and comprises simply a list of the

input values and associated output values which result when the particular

logical operator is applied to that particular set of inputs. Table 2.1 shows

the logic cube for an "or" type gate and for a "1-bit adder" type gate.

Inputs
1 2

Outputs
3

1. 0 0 0

2. 0 1 1

3. 1 0 1

4. 1 1 1

An "or" cube

Inputs
1 2

Outputs
3

1.0 0 0 0

2. 0 1 0 1

3. 1 0 0 1

4. 1 1 1 0

A "1-bit adder" cube

Table 2.1: Two Logic Cubes

A logic cube completely describes the logic of a gate and has the additional

property that if the signals for any subset of the inputs and outputs are

known, then a list can be supplied of all remaining inputs and outputs which

is consistent with the set of known signals. For example, if it is desired to

have a signal of 0 on line 3 of the "or" gate given above, then the only set

of signals for the input lines which is consistent with this signal is the

single pair (0,0). If, however, a signal of 1 is desired on output line 3,

then any of the three pairs (0, 1), (1, 0), and (1, 1) are consistent with

this signal. What this means is that the circuit need not necessarily be

processed in input to output order, and that when a gate is processed it may

produce a list of possible signals rather than a unique vector. It will be

this type of list which constitutes the decision list in the justification

phase of the d-algorithm.

Faults and fault propagation add a new dimension to cubes and necessitate an

extension of the logic cube to accommodate the presence of faults in the

circuit. We begin by investigating the description of a fault pseudogate.

Such a gate, as indicated in Subsection 1.2, requires two simultaneous

descriptions, namely, the functioning of the pseudogate under normal operation

and its functioning when a fault occurs. To facilitate such a simultaneous

description, we introduce two new "signals,” d and d. A signal d assigned to

a line means that when the fault is present the line will have the value 1,

and when no fault is present the line will have the value 0. The signal d

assigned to the line means precisely the opposite. The d and d signals

represent the discrepancy which is necessary to distinguish the fault mode

from the normal operation, and therefore it will be these types of signals

which will need to propagate to the outputs.

22

Once a careful description is made for a fault pseudogate in terms of normal

and fault mode operation, it is easy to translate this description into a cube

description by using the symbols d and d. This is called the d~cube for the

fault. Table 2.2 shows the d-cubes for a stuck-at-1 fault and a stuck-at-0

fault.

Input Output Input Output

0 d 0 0

1 1 1 I

stuck-at 1 stuck-at-0

Table 2.2: The stuck-at fault d-cubes

In the stuck-at-1 fault, an input signal of 0 will produce an output signal of

1 (stuck) when the fault occurs and 0 otherwise, and hence its output value

will be represented by the symbol d. An input signal of 1 produces an output

signal of 1 in either normal or fault mode. In the stuck-at-0 fault, it is

the 1 input which causes the discrepancy in the output, and this is indicated

by using the symbol d as the corresponding output. The cross-wire faults and

other nonclassical faults are discussed in Section 3.

To propagate a fault through the circuit, we need lastly to modify the cubes

for the normal gate types to allow them to transmit the discrepancy signals d

and d. This will be the d-cube for the gate type. The modification of the

logic cube of the gate to a d-cube involves a simple argument for each case of

the sort "if the fault occurs, then...," and "if the fault does not occur,

then..." We give as an example the extension of the logic cube for the "or"

gate shown in Table 2.3:

23

Inputs
1 2

1.0 0

2 . 0 1

3. 1 0

4. 1 1

5. 0 d

6 . 0 d

7. 1 d

8. 1 d

9. d 0

10. d 1

11. d d

12. d "d

13. d 1

14. 1 0

15. "d d

16. “d d

Output
3

0

1

1

1

d

d

1

1

d

1

d

1

1

d

1

1

Table 2.3: The "or" gate d-cube

Take, as a case, the row whose inputs are d and 0. We may argue as follows:

"If the fault is present, then the first input will be 1 and the second input

will be 0, so that the output is 1. If the fault is not present, then the

first input will be 0 and the second input will be 0 so the output will be 0.

Thus, when the fault exists, the output will be 1 and when the fault does not

exist, the output will be 0. The output, therefore, is assigned the value d

24

in this row.” Of course, the complete description of the cube is fairly long,

and we have made some effort to abbreviate this description in the coding of

the d-algorithm (see Section 4). We note that for d-cubes, as for logic

cubes, any set of values for a subset of input and output lines for a gate

induces a sublist of the d-cube which is consistent with the assigned value.

Thus, for example, an assignment of d to the first input of an ”or" gate

produces the list of possible assignments of the remaining inputs and outputs

given in Table 2.4

Inputs
1 2

Output
3

9. d 0 d

10. d 1 1

11. d d d

12. d d 1

Table 2.4: A Restricted Cube for the ”or” Gate

It will be this type of list which constitutes the decision list in the

propagation mode.

25

2.3 Description of the d-Algorithm

We can now describe in a more precise fashion the general d-algorithm. We are

given the circuit as described in Subsection 1.1, including as gates the fault

pseudogates described in Subsection 1.2. We are also given d-cubes for the

fault pseudogates and both logic and d-cubes for the standard gates in the

circuit. The gates can technically be processed in any order, and some

discussion on the merits of one ordering over another is undertaken in Section

A. Virtually every implementation of the d-algorithm, however, has the

following restrictions on the ordering of gates:

1. All fault pseudogates and gates which are on a path originating from a

fault pseudo-gate comprise the first set of gates to be processed. This is the

propagation stage of the algorithm.

2. The remaining gates are then processed. This is the justification stage of

the algorithm.

3. In the propagation stage, no gate is processed unless it is a fault

pseudogate or until at least one gate (or pseudogate) immediately preceding

that gate has been processed.

4. In the justification stage, no gate is processed until at least one gate

(or pseudogate) immediately succeeding that gate has been processed.

26

Thus, gates are in general processed in forward order from the faults and then

in backward order from the faults. This insures a sense of connectedness and

direction to the problem. The general backtrack scheme, however, does not

require such an ordering, and with modifications, the d-algorithm could accept

gates in any conceivable order. This flexibility will be important to keep in

mind when we deal with simultaneous faults.

The "decision list" for a gate is simply the cube for that gate, or more

precisely, the restriction of the cube to assignments consistent with previous

values assigned to input or output lines of that gate. The gates processed in

the propagation stage are assigned decision lists derived from d-cubes. Gates

in the justification stage, however, are assigned lists from logic cubes,

reflecting the fact that no fault signals occur on that part of the circuit.

Consequently, output lines from a justification stage gate must be assigned a

logical value, even if they are input lines to a propagation stage gate.

The decision lists vary accordingly, both by the location of the gate and by

the values which have been assigned to the adjacent lines up to that point in

the algorithm.

The gates are processed in the order given and with the decision lists

as described above, thus insuring that line values are consistent both with

gate logic and with respect to adjacent gates. One further check must be made

to insure that these values can actually detect the fault. This check is done

in the propagation stage on leading lines —that is, an output lines from

processed gates for which at least one successor gate to that line is either

an output gate or an unprocessed gate. The rule which must be applied here is:

27

Propagation Rule: At least one leading line must have a value d or d

The d-algorithm proceeds in the format of the backtracking algorithm described

in Subsection 2.1, checking, in the propagation stage, the propagation rule,

until it either makes a consistent assignment to the final gate or backtracks

through all of the gates without finding a consistent assignment. In the

former case, the input gate assignments indicate the test vector to be

applied, and the assignment to the output gates—which are the only remaining

leading gates—insure that at least one d or d assignment has occurred, so

that this vector actually detects the fault. In the latter case, it follows

that every possible assignment has been tried subject to circuit consistency

and fault detection, so that no possible set of input vectors could detect the

fault. Figure 2.2 gives a flow chart for the d-algorithm.

The d-algorithm, then, is guaranteed either to find a vector which detects the

fault or verify that no such test vector exists. In this sense, it is

superior to the path sensitization algorithm, which may fail to find a test

vector when one actually exists. The added power of the d-algorithm is due to

the freedom allowed to gate assignments which is not available to the path

sensitization algorithm, so that many lines with d or d values may be

propagated simultaneously. It is also important to note the improvement in

efficiency of the d-algorithm over a straightforward enumeration of input

vectors. The backtrack algorithm, starting from the point of fault, insures

that the only assignments made are those which could lead to fault detection.

It may, therefore, backtrack before it even assigns input values and generally

28

Figure 2.2 : Format for the d-algorithm

29

assigns only a small proportion of these values to an invalid test before

establishing that it is invalid. It is therefore considerably more efficient

than straight enumeration of inputs. By improving the order in which the

gates are searched (within the restrictions given above), and the ease with

which gates can be processed, we can make substantial improvement in the basic

d-algorithm.

30

2.4 An Example

As an example to illustrate the functioning of the d-algorithm as presented in

the subsection 2.3, we consider the circuit shown in Figure 2.3. The large

gates are all "or" gates, whose logic cube was given in Table 2.1, and whose

d-cube was given in Table 2.3. (Input lines will always be numbered from top

to bottom. The triangular gates are "not" gates. They simply invert the

input signal (0 - 1, d-d) and hence will not be considered separately in the

backtrack. The circles will contain the values assigned to the lines as the

d-algorithm progresses. It is desired to find a test vector which will detect

the stuck-at-0 fault represented by the square box in Figure 2.3, and whose

fault cube was given in Table 2.2. The gates are numbered in the order they

will appear in the backtrack, and this ordering satisfies the restrictions 1-5

given in Subsection 2.3. The cube elements will be scanned in the order given

by the tables.

We now proceed to apply the d-algorithm. Since leading lines must have d or d

assigned to them, gate 1 (the fault pseudo-gate) must be assigned element 2 of

its cube. We then process gates 2 and 3 choosing for each the first element in

its cube for which the associated line values are consistent with lines

already assigned (elements 6 and 5, respectively). Gates 4 and 5 are

processed similarly with elements 13 and 1 respectively. (Note that there is

no requirement that gates 4 and 5 have outputs of d or d , since the leading

line from gate 3 alredy has value d.) Assigning element 9 to gate 6 completes

31

the propagation stage. Figure 2.4 shows the assignments made thus far, with

the number above each gate representing the cube element assigned to that

gate.

For the justification stage, we assign gate 7 with its only consistent logical

cube element 1, and then gate 8 has a unique consistent cube element 2. This

gives the situation shown in Figure 2.5. But now gate 9 has no cube element

which is consistent with its adjacent lines, and so the algorithm begins

backtracking. Gates 8, 7, and 6 have no further consistent cube values, and

gate 5 is now assigned element 2. Now gate 6 has inputs d and 1, and so

cannot be assigned a cube element for which its output line -the sole leading

line - has value d or d. The algorithm backtracks to gate 5, for which there

is no further element whose unassigned input line (to a justification stage

gate) takes on a logical value. Thus the algorithm backtracks to gate 4 and

gives it the next available consistent cube element 14. Gate 5 now goes

through its cube once more, and the first available consistent element is 9.

Gate 6 is now assigned element 11, and we arrive at Figure 2.6. We enter the

justification mode once more, and again gates 7 and 8 have unique element

assignments 1 and 2, respectively. Now, however, gate 9 has cube element 1

consistent with the assigned lines. Symmetrically, gates 10 and 11 are

assigned cube elements 2 and 1, respectively. The algorithm now reaches the

end of the gate proceeding order, and stops with all gates having consistent

cube assignments as shown in Figure 2.7. The input vector (0,0, 0,0) is

32

therefore a test vector for the fault, as required. This completes the

example.

The circuit given in this section was developed by P. R. Schneider [25] , and

has the property that no single path of d's and d’s is sufficient to detect

the fault given. The algorithm, as just used, in fact, tried all possible

ways of "sensitizing" the single path through gates 1, 2, 3, and 6, and

finally applied the cube elements which produced two such paths simultaneously

to produce a test vector.

33

i.
i

34

I.
i

I.
I

37

f.
I

Figure

3. Generalizations of the d-Algorithm

We describe in this section some important ways in which the d-algorithm

described in Section 2 can be generalized to handle a wider class of faults

and circuits. Subsection 3.1 covers more general classes of faults, including

cross-wire, inductive, and simultaneous faults. Subsection 3.2 covers more

general cube descriptions, including abbreviated descriptions and empirical or

operational descriptions of cubes.

39

3.1 Non-classical and Simultaneous Faults

We describe in this subsection three classes of faults — cross-wire faults,

gate faults, and simultaneous faults — which are not treated by the standard

d-algorithm, but which are of practical concern in circuit testing.

The standard cross-wire faults were described in Subsection 1.2. We can use

that description to form cubes for cross-wire "and" and "or" gates as shown in

Table 3.1:

Inputs Outputs Inputs Outputs

1 2 3 4 1 2 3 4

0 0 0 0 0 0 0 0

1 0 1 d 1 0 "d 0

0 1 d 1 0 1 0 7

1 1 1 1 1 1 1 l

cross-wire "or" cross-wire "and"

Table 3.1: The cross-wire faults

A more general type of cross-wire fault frequently tested in circuits is the

"inductive" type of fault, where one wire of a set of parallel wires changes

signal if both of its neighbors are the opposite signal. A d-cube for a four

wire fault is given in Table 3.2, listing only the non-trivial elements.

40

51

—

3

7

4

-8

Inputs

12 3 4

Outputs

5 6 7 8

Outputs equal corresponding Inputs

except for the following elements:

0 0 10
0 10 0

0 10 1

10 10
10 11
110 1

0 0 d 0

0 d 0 0

0 d" d 1

1 d d 0

1 d" 1 1

1 1 I 1

Figure 3.2: A four-wire "inductive"

fault and its d-cube

Any number of other types of signal switching faults can be described using

this same format.

A second type of fault which can be handled in the format of the generalized

d-algorithm is the gate fault. This type of fault is useful when one is faced

with circuits made up of complex gates whose faulty behavior may not be

attributable to simpler faults. Here one must construct a fault cube for the

entire gate which reflects the faulty behavior, and then substitute for the

41

gate cube this fault cube. For example, suppose that the 1-bit

adder described in Table 2.1 was known to have as one of its more frequent

faults the inclination to add 1 to 1 and produce outputs (0,0). It may not

be clear what in the internal circuitry of the adder has produced such a

fault. It is nevertheless easy to describe the fault succinctly, as is done in

Table 3.3.

Inputs Outputs

1 2 3 4

0 0 0 0

1 0 1 0

0 1 0 1

1 1 d 0

Table 3.3: The cube for a faulty "l-bit adder”

By simply replacing this cube for that of the standard logic cube shown in

Table 2.1 we can incorporate the fault into any ”l-bit adder" type gate which

might be suspected of having this type of fault.

The final type of fault is the simultaneous fault. This is mentioned

frequently in the literature as a type of fault which is difficult to

incorporate into test generation algorithms. In the context of a backtracking

algorithm, however, simultaneous faults can be tested with only slight

modification. A simultaneous fault is actually a set of faults which occur

simultaneously at various locations of the circuit. It is important to

distinguish this composite fault from the individual faults themselves since a

test vector for a simultaneous fault distinguishes the case when all of these

42

faults occur from the case where none of the faults occur. Simultaneous faults

are likely to occur in equipment which is being used for the first time or

which has been assembled by hand (properties frequently true of the prototype

instruments developed at the Bureau of Standards), and should be available as

a consideration when the circuit is malfunctioning and single fault tests fail

to detect the fault.

Each single fault of the simultaneous set is furnished with the appropriate

fault cube just as shown in Section 2 and this subsection. The d and d

signals, moreover, represent this same situation for all of the fault gates,

that is, under normal operation the lines assigned d have value 0 and those

assigned d have value 1 for every fault gate in the simultaneous set, whereas

in fault mode operation, the lines asssigned d have value 1 and those assigned

d have value 0 for every fault gate in the set. With the possibility of

faults now occurring in tandem, it is necessary to modify the fault cubes for

any fault gate whose input might be affected by another fault in the

simultaneous set. This is done by extending the fault cube to allow d and d

inputs, and is again accomplished by a simple argument of the sort "if the

faults occur,..." and "if the faults do not occur,...." We can modify, for

example, the cross-wire "or" fault to allow d and d inputs as indicated in

Table 3.4.

43

Inputs Outputs

1 2 3 4

1. 0 0 0 0

2. 0 1 d 1

3. 1 • 1 d

4. 1 * 1

5. 0 d d d

6. 0 7 0 7

7. 1 d d

8. 1 7 1 1

9. d 0 d d

10. d i d 1

11. d d d d

12. d 7 d 1

13. "d 0 7 0

14. 7 1 1 1

15. 7 d 1 d

16. 7 7 7 7

Table 3.4: A full d-cube for the cross-wire "or”

the element whose inputs are d and d . Under normal

inputs would be (0, 1). These would be passed through normally to the

outputs, which would therefore also be (0, 1). In the fault mode, however,

the inputs would be (1,0), which would then be altered by the simultaneous

44

cross-wire fault to the common outputs (1, 1). The output values for

this element are therefore (d, 1), obtained by comparing the outputs obtained

under each operating mode. Notice now that a partial cancellation has

occurred, the cross-wire fault countermanding the previous fault. This effect

is even more apparent in the cube element whose inputs are (1, d) , where a

complete cancellation occurs in the outputs (1, 1). It is this kind of

cancellation which causes single fault tests to fail in some instances to

detect those faults in the presence of other faults, and indicates the need

for simultaneous fault capabilities.

To handle simultaneous faults we must also be more careful in specifying gate

ordering for the backtrack algorithm in the presence of simultaneous faults.

In particular, we must insure that the first fault gates processed are those

gates which have no fault gates preceding them in the circuit. Call these

minimal fault gates. The ordering restriction (3) of Subsection 2.3 must now

be modified to read

3'. In the propagation stage, no gate is processed unless it is a

minimal fault pseudogate or until at least one gate (or pseudogate)

immediately preceding that gate has been processed.

Now with the modification of the fault-cubes described above, all fault gates

encountered later are processed as if they were normal gates. We must also

modify the propagation rule of Subsection 2.3 to allow propagation from any

fault gate. The modified rule is:

Propagation Rule': After all fault pseudogates are processed,

at least one leading line must have the value d or d.

45

With these modifications the d-algorithm can do a complete analysis of a

simultaneous fault condition, and will always produce a test vector if one

exists

.

46

3.2 Finding Faults Detected by a Given Test

Up to now, we have been dealing primarily with finding a test vector to detect

a given fault. The procedure given in the Subsection 3.1 provides an

interesting and efficient method for doing the converse, namely, determining

which faults are detected by a given test. In testing circuits, one is more

often interested in how broad a class of faults can be detected by a set of

test vectors rather than what test will detect a single fault. We give now a

quick method which determines, given a set of input vector and a fault,

whether the vector tests this particular fault. Since the procedure is so

efficient, it can be used effectively to test a large set of faults in turn

against a given input vector, and consequently to obtain a sense of the "fault

coverage" of that input vector.

The procedure works as follows. For a given input vector and fault (single or

simultaneous), associate a simultaneous fault which consists of the given

fault, along with a set of input-set-to faults. These "faults" occur at the

input gates, but their cube is comprised of a single element whose output

value is the desired value of the input. Thus they do not contribute a d or d

to the system, but instead merely set the input line to its appropriate value.

Since the input gates are considered to be fault gates, however, the

d-algorithm will always process these gates first. From this point on, the

elements of the rest of the gates—including the fault pseudo-gates—are

determined uniquely. Therefore in one pass through the gates (entirely in the

47

propagation stage) the algorithm determines whether a d or d appears at an

output, i.e., whether the given input values detect the given fault.

The fault testing procedure given above is easily implemented within the

context of the d-algorithm as presented. It is part of the FORTRAN Code

developed, and is illustrated in Section 5.

48

3.3 Generalized Cubes

There are three special techniques for constructing and modifying cubes which

can improve both the applicability and the efficiency of the d-algorithm. The

first technique is the use of extra symbols to denote "unassigned" line

values. These allow, when possible, the delaying of assignments of values to

certain non-critical lines until later in the backtrack, so that greater

freedom can be exercised in choosing values when the lines become critical.

The use of this technique in the d-algorithm can improve efficiency

substantially. The second technique is the use of empirical rather then

logical descriptions of gates to construct d-cubes for those gates. This

allows not only the capability of describing circuits on a variety of levels,

but also permits the limiting of gate operation to reflect the environment in

which the gate or circuit is used which again yield an improvement in

efficiency of the algorithm. The final technique is a fast cube search and

element retrieval, based on a compressed data structure for storing the

d-cube. This final improvement we leave until Section 4, since it is

essentially an implementational rather then algorithmic feature.

As mentioned in Subsection 2.1, one of the most critical feature of a

backtrack algorithm is the number of elements in each of the decision lists,

since a complete backtrack sequence considers a number of decision

configurations equal to the product of the length of the individual decision

lists. One way to decrease the number of elements in a d-cube is to combine

several elements into one. This is accomplished by using line values

which represent a delayed non-assignment for that line. The simplest

49

example of this, and one which we have incorporated into the code, is based on

the fact that an "or" gate which has one of its inputs assigned the value 1

will always have its output assigned value 1 regardless of the other input.

Thus if we assign a 1 to either of the inputs, we can process many of the

succeeding gates without knowing immediately the value of the other input. We

therefore give the other input an "unassigned" value, say -1, which is changed

to a value of 0, 1, d, or d only when necessary later in the backtrack. This

decreases the size of the d-cube for that "or” gate from sixteen elements to

eleven as shown in Table 3.5:

Inputs Outputs

-1 1 1

1 -1 1

0 0 0

0 d d

0 d d

d 0 d

d d d

d *d 1

d 0 d

d d 1

d d d

-1 = unassigned

Table 3.5: A reduced d-cube for the "or" gate

50

The -1 value assigned to the input line is reassigned when the output of the

gate preceding that line is finally assigned. A further, and more elaborate,

reduction can be made by assigning "partially unassigned” values to gates.

These are assignments to a certain subset of inputs and outputs which are left

unassigned, but for which an assignment of a value for one line will dictate

the values assigned to every other line in that subset. Again, taking the "or"

gate as an example, suppose a value of 0 is assigned to one of the inputs to

that gate. Now the output will always have a value equal to that of the other

input, regardless of what value is given to that input. We can therefore

leave the values of these two lines unassigned with the restriction that they

must be given equal values when they are finally assigned. The d-cube now

needs only seven elements as shown in Table 3.6:

Inputs Outputs

0 -1 -1

1 -1 1

-1 0 -1

-1 1 1

-1 -1 -1

d 1 1

d d 1

All lines assigned -1 must be given the same value

Table 3.6: A further reduced d-cube for the "or” gate

51

We can also handle the case where a pair of lines must have opposite values.

The "not" gate for example always has as its output the complement of the

input, 1 and 0 being complements of each other, and d and d being complements

of each other. We can therefore leave the input and output of this gate

unassigned with the restriction that they must be given complementary values

when they are finally assigned. We can use the symbols two symbols -1 and -2

to represent this condition in the d-cube, by requiring that each line with a

-1 in the cube must be given the same value when they are assigned, and each

line with -2 in the cube must be given the complementary value to those with

-1. Using this convention, we reduce the "not” d-cube to exactly one element,

as shown in Table 3.7:

Input Output

-1 -2

Table 3.7: A reduced cube for the "not" gate

By careful manipulation of these complementary unassigned symbols we can make

substantial reductions in the size of more complex gates. Table 3.8 gives

complete d-cubes for the "or” and "1-bit adder" gates, both of which have

only six elements.

52

Inputs Outputs Inputs Outputs

1 2 3 1 2 3 4

0 -1 -1 0 -1 0 -1

1 -1 1 1 -1 -1 -2

-1 0 -1 -1 0 -1 0

-1 1 1 -1 1 -1 -2

-1 -1 -1 -1 -1 -1 0

-1 -2 1 -1 -2 0 1

"or” "1-bit adder”

Table 3.8: Reduced cubes for the ”or” and "1-bit adder" gates

The backtrack algorithm needs only to keep track of each set of unassigned

lines whose elements must take the same value along with the complementary set

whose elements must take the complementary value, merging sets if necessary

when a common element occurs in both sets. It assigns all of the lines in a

pair of complementary sets simultaneously whenever any one line is given a

value, and backtracks when it detects inconsistencies occurring when two lines

from the same set are assigned complementary values, or when lines in

complementary sets are assigned the same value. Although the necessary

structures to maintain this are fairly simple, we dispense with the details in

this report, as it is not operational in the current version of the code.

The final part of this subsection will be spent describing the ways in which

cubes can be constructed using empirical data on gate operation. Not only can

this allow more general gate types to be developed, but it can also provide

the user with a method of directing the search for test vectors by restricting

gate operation according to his perception of the operation of the circuit.

53

Suppose, for example, it is desired to test a circuit which contains a 4-bit

adder, whose eight inputs comprise two 4-bit numbers, and whose output is

their 5-bit sum. A full non-reduced d-cube for this adder would require 4® =

65,536 elements. Although it may be feasible to store this many elements, it

is unlikely that the d-algorithm would be practical on a circuit containing

many 4-bit adder type gates. What a user of the d-algorithm needs to do in

this situation is to review the environment in which the adder is used and

choose a subset of elements which are most likely to occur in the operation of

the circuit. Thus, he might conclude that numbers greater than 4 are unlikely

to be processed by certain of these adders, or that the numbers processed by

some adders are always in multiples of 4, thereby allowing him in either case

to decrease cube size to 4^ = 256 elements. He may have gates of which he

does not have or does not desire to obtain complete information, and therefore

may be reduced to describing only a limited operation of the cube. Again,

simply by listing those elements for which he has some knowledge, or which are

critical to circuit operation, he thereby obtains a limited but accurate

operating description for that gate.

Restricted gate descriptions have the further property that they can be used

to determine certain faults to be "non-critical" in the operational

environment of a circuit. Consider, for example, the 1-bit adder whose gate

configuration is shown in Figure 1.1 and for which it is desired to find a

test vector to detect a stuck-at-1 fault in the line between the "or” gate and

its succeeding "and" gate. If it is known that the first input gate of this

circuit is always set to 1 when the circuit is in normal operation, then the

54

stuck-at-fault given above is undetectable, since it can never be given a 0

input. Such a fault is therefore not necessary to test in order to declare

the circuit fault free, since the situation under which the fault is critical

never arises.

The use of restricted cubes, it can be seen, allows a potentially rewarding

dialogue between the designer of a circuit and the tester of that circuit.

With the designer's knowledge of the operating environment and characteristics

of the circuit, and the tester's knowledge of the operation of the

d-algorithm, a battery of tests can be built for a circuit which efficiently

and effectively demonstrates both the design integrity and the operating

capabilities of that circuit.

55

A . Implementation of the d-Algorithm

This section presents the techniques which can be employed in implementing the

d-algorithm in order to improve its efficiency. Subsection A.l outlines the

ordering schemes which were used to process gates in the backtrack algorithm,

along with the advantages and disadvantages of each. Subsection A. 2 deals

with a method of coalescing gates into components, allowing for efficient use

of repeated gate groupings. Subsection A. 3 gives a specific data structure

for cubes which improves cube searches and at the same time reduces storage

requirements

.

A FORTRAN code which incorporates many of the implementation ideas given in

this Section, and has, as well, the capabilities of generalization given in

the previous section. A listing of the code is available from the authors.

The code is capable of handling general fault and gate cubes, as well as

simultaneous faults. It can test an input to find detectable faults

(Subsection 3.2), form components (Subsection A. 2) and run several orders of

gate ordering for the backtrack. One has to note, however, that many of these

capabilities involve changes or additions in the code itself, since they are

too cumbersome and confusing to be effective as a user option. The specific

user capabilities are outlined in the appendix. It is virtually impossible to

use many of the features of the generalized d-algorithms
,
however, without a

firm knowledge of the concepts underlying these generalizations, and many of

these could not be included as standard

56

specifications of the code. What was not incorporated in the present form of

the code was any sequential capabilities, of the more elaborate reduced cube

schemes (Subsection 3.3), and the compressed data structure (Subsection 4.3).

These are left for future development.

57

4. 1 Ordering Schemes for Gate Processing

The restrictions given in Section 2 for the order in which the d-algorithm

processes gates still allows a great deal of flexibility in gate ordering. We

give four schemes for gate processing which have different effects on the flow

of the d-algorithm. They are called the depth-first ordering, the breadth-

first ordering, the restricted depth-first ordering, and the restricted

breadth-first ordering. They all follow the basic ordering rules given in

Subsection 2.3, namely, processing first fault gates, then gates forward of

fault gates, and finally gates behind fault gates, and never processing a gate

until the appropriate adjacent gate is processed. To do this, a general

search procedure requires the maintenance of two lists, the propagation

elgibility list (PEL) and the justification elegibility list (JEL), which

contain gates elegible in the respective phase according to the restrictions

given in Subsection 2.3. Both lists are initially empty, and the general

search procedure is as follows.

(1) Place the fault gate (or minimal fault gates) on PEL.

Propagation stage—while PEL is nonempty, perform the following:

(2) Choose a gate G from PEL and process that gate.

(3) Place into PEL all unprocessed gates that are on an output line of G

and place into JEL all unprocessed gates that are on an input

line of G.

(4) Mark. G processed, and delete it from PEL.

58

When PEL is empty, the propagation stage is completed, and the justification

stage begins.

Justification stage—while JEL is nonempty, perform (2’), (3’), and (4') on

JEL:

2' Choose a gate G from JEL and process that gate.

3 f Place into JEL all unprocessed gates that are on an input line of G.

4' Mark G processed and delete it from JEL.

When JEL is empty the justification stage is complete.

Any ordering which follows the above general format satisifies the basic

requirements of gate ordering in the d-algorithm. The details of how to place

and remove elements from PEL and JEL are what differentiate the four ordering

schemes given above. The ordering schemes are:

Depth-first search - gates are inserted and removed from the

top of the lists (LIFO list maintenance).

Breadth-first search - gates are inserted at the bottom of the

lists and removed from the top of the lists (FIFO list maintenance).

Restricted breadth-first and depth-first search:

Propagation stage - The gate processed is the topmost gate

in PEL for which all input lines coming

from propagation stage gates have been

assigned values.

Justification stage - The gate processed is the topmost gate

in JEL for which all output lines going

to justification phase gates have been

assigned values.

59

Roughly speaking, depth-first search attempts to assign values to the outputs

(or inputs) as fast as possible, whereas breadth first search keeps as broad a

base as possible in which to choose new adjacent gates. Restricted search is

a modification which holds processing of a gate until all lines on "one side"

of the the gate are either assigned values or will never be assigned in that

phase. Thus it could be considered a "local breadth-first search" rule.

Restricted searches also allow for a quicker search of the d-cube, since the

data can often be keyed to input or to output values (see Subsection 3.3).

It is a non-trivial fact that, in any circuit without feedback, there is

always a way of ordering the gates so that a restricted search is possible.

The algorithm as coded is capable of using any of these four search procedures

given. We have found thus far that the most efficient option is to use

nonrestricted depth first search in the propagation stage and restricted

breadth first search in the justification stage. The reasoning for this

option is that in the propagation stage the most important goal is to drive a

d or d to the outputs, hence to employ an unrestricted depth-first search,

whereas in the justification stage the most important goal is to maintain

logical consistency, hence to employ a restricted breadth first search. Some

limited testing seems to bear out this option.

4.2 Component Formation

VLSI’s today tend to be made up of components , that is, devices which are used

as single units but which comprise internally a system of simpler logical

gates, that is, "circuits-within-circuits." There may be many identical

components in a circuit, and therefore some initial pre-processing of these

components can save time when the algorithm must repeatedly process identical

components. The preprocessing performed consists of producing a d-cube for

the set of gates in the component so as to treat that component as a single

gate. The algorithm then removes the gate system and replaces it by the newly

created component/gate.

Creating the d-cube associated with a component involves a complete

enumeration of all the possible input vectors and determining the output

vector of the component for each of these input vectors. The method of

determining the output values for a specific input vector is essentially that

of applying the d-algorithm to a smaller circuit with input gates set to the

appropriate values. Since cube construction requires only the forward

propagation drive mechanism, the algorithm for determining logic cube values

can be made faster than the general d-algorithm. >

Restrictions on the use of components in place of gate systems are the

following:

1. All gates in the component must be contiguous, that is must form a

connected set of gates within the circuit.

61

2. The ordering of gates in a component must be consistent with all

other components of the same type.

3. Faults may not be contained in any one of the listed components.

Because of restriction 3, separate consideration of a fault within an

individual component necessitates removal of that component from the list, and

treating it separately. The main advantage of component formation is the

reduction in number of backtracks the algorithm must performs before locating

a fault finding test vector. Having determined the internal logic of the

component once, the algorithm is not required to re-discover the logic upon

encountering each component. Component formation also illustrates the

important "macro” capabilities available for the d-algorithm as generalized in

this paper. Using component formation, together with the restricted cubes

outlined in Subsection 3.2, cubes for large components can be constructed

which enable the d-algorithm to find test-vectors more efficiently when large

components are being used in quantity.

62

4.3 Data Structures for d-Cubes

The most expensive structure to maintain and process in the d-algorithm is the

d-cube itself. For a reasonably complex gate the cube may be enormous, and

the cost in both storing and retrieving data for the cube is a big considera-

tion in constructing the code for the d-algorithm. One method which can save

both storage and retrieval time is to "pack" the input and output data each

>i

into a single integer element. In particular, if we represent 0, 1, d, and d,

respectively, as 00, 01, 10, 11 (in binary), then the input and output values

can each be represented by a single integer comprised of the concatenation of

the individual values. The d-cube is then stored as a single-valued array,

whose index number is the integer corresponding to the input values and whose

1

value is the integer corresponding to the output values. As an example, the

full d-cube for the cross-wire "or" fault can be derived directly from Table

3.4 and is shown in Table 4.1.

Input Output Input Output Input Output Input Output

1 . 0 0 3. 4 7 9. 8 10 13. 12 6

2. 1 13 4. 5 5 10. 9 9 14. 13 5

5. 2 10 7. 6 6 11. 10 10 15. 14 6

6. 3 3 8. 7 5 12. 11 9 16. 15 15

Table 4.1 : Storing the d-cube for the cross-wire "or" fault

The inputs (d, 1) for instance, correspond to the integer 1101 = 13, and the

corresponding output integer 5 = 0101 corresponds to the outputs (1, 1).

I

'I

63

If stored as the four line values indexed by the cube element number, the d-

cube for this gate would take 16 x A = 64 words of storage. By using the

"packed" scheme, we have reduced the storage to an array of only 16 elements.

Furthermore, the time taken for a cube search can decrease dramatically when

some of the inputs are already known. For example, if the gate given above,

when processed had its second input already assigned d = 10, then the search

indices reduce to Ai + 2 for i = 1, 2, 3, A, that is, 2, 6, 10, and 1A.

Rather than scanning each element of the cube until a match is found, the

algorithm can now reference the above four indices directly, thus reducing the

number of search calls four-fold.

For retrieval purposes, this packed format works best in the propagation

stage, when one or more inputs have been assigned values. It is especially

fast when restricted search is employed, since now most of the gates processed

have all of their inputs assigned values, and as a result the packed array is

only referenced once. One can think of reordering the cube so that cube

elements can be retrieved by their output values instead of their input

values. This would work particularly well in the justification stage, where

one or more output values have been assigned values when the gate is

processed. Unfortunately, an output value may correspond to more than one

input value.

To employ the search technique described above, it would be necessary to group

the inputs which correspond to a given output and have the output integer

reference this list. The resulting data structures would be somewhat more

cumbersome, but could still save time over a sequential cube search. The

compressed data structure was not incorporated into the current code.

6A

REFERENCES:

Journal articles:

[1] Abraham, J. A. and D. D. Gajski (1981), "Design of Testable Structures

Defined by Simple Loops”, IEEE Transactions on Computers C-39

pp. 875-883.

[2] Abramovici, M. (1982), "A Hierarchical, Path-Oriented Approach to Fault

Diagnosis in Modular Combinatorial Circuits”, IEEE Transactions on

Computers, C-31, pp. 672-676.

[3] Abramovici, M. and M. Breuer (1980), "Multiple Fault Diagnosis in

Combinatorial Circuits Based on Cause-Effect Analysis", IEEE

Transactions on Computers C-26, pp. 451-460.

[4] Acken, C. (1981), "A Mathematical Model of Digital Systems", Proceedings

of the 24th Midwest Symposium on Circuits and Systems.

[5] Agarwal, V. K. and A. S. F. Fung (1981), "Multiple Fault Testing of

Large Circuits by Single Fault Test Sets", IEEE Transactions on

Computers C-30, pp. 855-865.

[6] Armstrong, D. B. , (1966), "On Finding a Nearly Minimal Set of Fault

Detection Tests for Combinatorial Logic Nets", IEEE Transactions on

Electronic Computers EC-15, pp. 66-73.

[7] Bossen, D. C . and S. J. Hong, (1971), "Cause-Effect Analysis for

Multiple Fault Detection in Combinatorial Networks, IEEE Transactions on

Computers, Vol C-20, pp. 1252-57.

[8] Dandapani, R. and S. M. Reddy (1974), "On the Design of Logic Networks

with Redundacy and Testability Considerations", IEEE Transactions on

Computing C-23, pp. 1139-1149.

65

[9] Du, M-W. and C. D. Weiss (1973), "Multiple Fault Detection in

Combinatorial Circuits: Algorithms and Computational Results, " IEEE

Transactions on Computers C-22, pp. 235-240.

[10] Eldred, R. (1959), "Test Routines Based on Symbolic Logic Statements",

Journal of the Association for Computing Machinery, Vol. 6, PP. 33-36.

[11] El-zig, Y. M. and S. Y. H. Su (1982), "Fault Diagnosis of MOS

Combinatorial Networks, IEEE Transactions on Computers C-31, pp.

129-139.

[12] Fujiwara, H. and K. Kinoshita (1981), "A Design of Programmable Logic

Arrays with Universal Tests, IEEE Transactions on Computers C-30 , pp.

823-826.

[13] Goldstein, L. H.
, (1979), "Controllability/Observability Analysis of

Digital Circuits", IEEE Transactions on Circuits and Systems, Vol.

CAS-26, pp. 685-693.

[14] Gray, F. G. and J. F. Meyer, (1970), "Locatability of Faults in

Combinatorial Networks, IEEE Transactions on Computers C-20, pp

1407-1412.

[15] Kime, C. R.
, (1979), "Sequential Test Generation", IBM Technical

Disclosure Bulletin, N20, pp. 3332-3336.

[16] Leedy, T. F. (1979), Large Scale Integration Digital Testing -Annotated

Bibliography 1969-1978, NBS Technical Note 1102, U.S. Department of

Commerce/Bureau of Standards, Washington, D.C.

[17] Mallela, S. and G. M. Masson (1978), "Diagnosable Systems for

Intermittent Faults, " IEEE Transactions on Computers C-27, pp. 560-566.

66

[18] Ostapko, D. L. and S. J. Hong, (1979), "Fault Analysis and Test

Generation for Programmable Logic Arrays (PLA's)", IEEE Transactions on

Computers C-28, pp, 617-626.

[19] Roth, J. P. (1966), "Diagnosis of Automata Failures", IBM Journal of

Research and Development 10, pp. 278-291.

[20] Roth, J. P.
, (1978), "Improved Test-Generating D-algorithm"

,
IBM

Disclosure Bulletin, Vol. 20, pp. 392-294.

[21] Roth, J. P., (1978), "Sequential Test Generation", IBM Technical

Disclosure Bulletin, N 20, Pp 3332-3336.

[22] Roth, J. P.
,

W. G. Bourilions, and R. Schneider, (1972), "Programming

Algorithms to Compute Tests to Detect and Distinguish Failures In Logic

Circuits", IEEE Transactions on Computers C-21, pp. 404-471.

[23] Russell, J. D. and C. R. Kime, (1971), "Structural Factors in the Fault

Diagnosis of Combinatorial Networks," IEEE Transactions on Computers

C-20
, pp. 1276-1285.

[24] Schertz, D. R. and G. Metze, (1971), "Locatability of Faults in

Combinatorial Networks, IEEE Transactions on Computers C-20, pp.

1407-1412.

[25] Schneider, P. R. "On the Necessity to Examine D-chains in Diagnostic

Test Generation - An Example", IBM Journal of Research and Development,

Vol. 11, p. 114.

[26] Short, R. A. and J. Goldberg, (1971), "Soviet Progress in the Design of

Fault-Tolerant Digital Machines", IEEE Transactions on Computers C-20,

pp. 1337-1352.

67

[27] Suk, D. S. and S. M. Reddy (1980), Test Procedures for a Class of

Pattern-Sensitive Faults in Semiconductor Random-Access Memories, IEEE

Transactions on Computers C-29, pp. 410-429.

[28] Thatte, S. M. and J. A. Abraham, (1980), "Test Generation for Micro

processors, IEEE Transactions on Computers C-29, pp. 429-441.

[29] Visvanathan, V.
,

A. Sangiovanni-Vincentelli
,

and R. Sacks (1981),

Diagnosability of Nonlinear Circuits and Systems", IEEE Transactions on

Computers C-30, pp. 889-904.

[30] Williams, T. W. and K. P. Parker, (1982), "Design for Testability - A

Survey", IEEE Transactions on Computers, Vol. C-31, p 2-15.

[31] Yam, S. S. and Y-S. Tang, (1971), "An Efficient Algorithm for Generating

Complete Test Sets for Combinatorial Logic Circuits, IEEE Transactions

on Computers C-20, pp. 1245-1251.

Books

:

[32] Breuer, I. and A. P. Friedman (1976) Diagnosis and Reliable Design of

Digital Systems , Computer Science Press, Potomac, Maryland.

[33] Chang, H. Y.
,

E. Manning, and G. A. Metze (1970), Fault Diagnosis of

Digital Systems , Wiley-Interscience ,
New York.

[34] Friedman, A. D. and P. R. Menon, (1971), Fault Detection in Digital

Circuits , Prentice Hall, New Jersey.

[35] Roth, J. P. (1980), Computer Logic , Testing , and Verfication , Computer

Science Press, Potomac, Maryland.

Journal issues devoted to fault testing and prevention:

[36] IEEE Transactions on Computers C-20, November 1971

[37] IEEE Transactions on Computers C-22, March 1973

[38] IEEE Transactions on Computers C-23, July 1974

- •

68

[39] IEEE Transactions on Computers C-24, May 1975

[40] IEEE Transactions on Computers C-25, June 1976

[41] IEEE Transactions on Computers C-27, June 1978

[42] IEEE Transactions on Computers C-29, June 1980

[43] IEEE Transactions on Computers C-30, Nov. 1981

[44] IEEE Transactions on Computers C-31, July 1982

Conference Proceedings:

[45] Digest of the 1971 Symposium on Fault Tolerant Computing, Pasaidena, CA,

IEEE Computer Society, Mar., 1971.

[46] Digest of the 1972 Symposium on Fault Tolerant Computing, Newton, MA,

IEEE Computer Society, June, 1972.

[47] Digest of the 1973 Symposium on Fault Tolerant Computing, Palo Alto, CA,

IEEE Computer Society, June, 1973.

[48] Digest of the 1974 Symposium on Fault Tolerant Computing, Urbana, IL,

IEEE Computer Society, June, 1974.

[49] Digest of the 1975 Symposium on Fault Tolerant Computing, Paris, France,

IEEE Computer Society, June, 1975.

[50] Digest of the 1976 Symposium on Fault Tolerant Computing, Pittsburgh, PA,

IEEE Computer Society, June, 1976.

[51] Digest of the 1977 Symposium on Fault Tolerant Computing, Los Angeles,

CA, IEEE Computer Society, June, 1977.

[52] Digest of the 1978 Symposium on Fault Tolerant Computing, Toulouse,

France, IEEE Computer Society, June, 1973.

[53] Digest of the 1979 Symposium on Fault Tolerant Computing, Madison, WI,

IEEE Computer Society, June, 1979.

69

[54] Digest of the 1980 Symposium on Fault Tolerant Computing, Kyoto, Japan,

IEEE Computer Society, June, 1980,

[55] Digest of the 1981 Symposium on Fault Tolerant Computing, Santa Monica,

Ca, IEEE Computer Society, June, 1981.

[56] Digest of the 1982 Symposium on Fault Tolerant Computing, Portland, ME,

IEEE Computer Society, June, 1982.

70

Appendix: Code and Sample Output

The d-algorithm was implemented on the UNIVAC 1108 in ANSI FORTRAN77.* The

capabilities of the compiled code are documented in the program text. The

code processes nine gate types (AND, OR, NOT, NAND, NOR, exclusive OR as well

as input gates, output gates, and dummy gates), four fault types (stuck-at

and cross-wire faults) and the input setting feature (Subsection 3.2). It can

form components from a given set of gates, creating a new cube and replacing

the component gates with the component in the circuit. The user can specify

the number of test vectors to be found for a given fault. Also included are

two parameters specifying the minimum number of leading lines which are

allowed to have the values d or d (called sensitized paths in the code).

These allow the user to test a circuit just constructed by setting the inputs

and observing the resulting outputs for correct logic, or to find which faults

are detected by a particular test vector (Subsection 3.2). In any case it may

be desired to have only logical circuit values, and so the minimum number of

sensitized paths could be zero. Setting an upper limit on the number of

sensitized paths permits the algorithm to act as a path sensitization

algorithm (Subsection 1.3) or otherwise limits the extent to which faults are

propogated through the system.

I

I

There are also several parameters in the program which can easily be reset to

I

broaden the capabilities of the algorithm. The algorithm has a DEBUG flag,
I

which when set allows the user to see each step of the backtrack. The number

* The sole exception was the use of in-line comments in the parameter and

declaration statement.

71

and size of gates can be changed, and new gates can be inserted by developing

the cube and putting it into the program in the format specified. The

algorithm currently uses restricted depth first gate orderings in the

propogation stage and restricted breadth-first ordering in the justification

stage, but these can also be changed by reordering the appropriate indices.

The output streams for six test runs appear in this Appendix. These nans

illustrate the narrow features of the code. They were all performed on the

arithmetic logic unit circuit shown in Figure A.l. It is made up of NOT, AND,

NAND, and NOR gates as indicated. The multi-input gates were decomposed into

the appropriate 2-input gates. Then faults were treated in the runs, and they

are indicated in the figure. Faults #1 and #2 are stuck-at-0 faults, and

Fault #3 is a cross-wire AND fault. The first three runs found several tests

each for Fault #1 ,
using three levels of component formation: Run #1 had no

components formed, Run #2 had the sets of circled gates in the figure

coalesced into a component, and Run #3 had the set of circled and squared

gates in the figure coalesced into components. The amount of time needed to

form components is indicated (in milliseconds) at the top of each run.

Component formation was limited primarily by the size of the d-cube which had

to be produced, and larger component formation will probably have to be

accompanied by a substantial paring of the d-cube by the user (Subsection

3.3). A very surprising phenomena is that the cube formation implementd in

this algorithm actually slows down the backtrack, as indicated by the TIME FOR

COMPUTATION which accompanies the output (also in milliseconds) . This is

probably due to the increase in time for searching the very large cubes

produced, and also to the loss of control of the internal gates of the cube.

72

i

If component formation is to speed up the backtrack, then more sophisticated

search mechanisms will have to be employed. Note that after the first test

vector was found, finding additional test vectors is very inexpensive. Run #4

tested the input found in Run #1 against Fault #1. This shows the checking

capabilities of the code (Subsection 3.2). Notice the time to check a test is

in hundredths of a second, as opposed to several seconds to find a test.

Runs #5 and #6 show the simultaneous fault capabilities of the code. A run

was first made for Fault #2 alone, and the test vector and resulting line

values are shown in Figure A-2. When Fault #3 is also present the input

vector shown will detect neither fault, for the cross-wire fault nullifies the

stuck-at fault. When the program was run on the two faults simultaneously,

however, a new input is produced which does in fact test the fault, and the

resulting line values are shown in Figure A-3.

One final note about the testing of the code. The d-algorithm, due to its

inherent intractibility
,

can perform very badly even on a circuit such as the

one tested. An example is the seven-fold jump in computation time between the

single and simultaneous faults in Runs #5 and #6. There were, moreover,

faults tested on this circuit which would not yield test vectors in the CPU

time alloted (usually 5 to 10 minutes). Thus it is difficult to make

statements of the efficiency of a program such as this, and also indicates

that substantial improvements can be made in running times by adding good

heuristics to the algorithm.

73

-£>

u>ro

Figure A.

1

: Test circuit (from The TTL Data Book ,

Texas Instruments, 1973, p. 390)

74

1

75

0

76

Problem //

1

join

TIKE USED TO FORM COMPONENTS IS 0

FAULT RUN NUMBER 1

FAULTS

GATE TT PE OF FAULT
-125 LINE 3 OF GATE 4A_ .S.TUCK-AT-Q

GATE ASSIGNMENTS
GT TP ADJACENT PINS

1 1

1

1

1

c .

3

c

3

-

4 1 4 . .

5 1 5

6 1 6 _

7 1 7

S 1 a

9 1 9

10 1 10 _ _ .

11 1 11
12 ~ 1 12
13 1 13
14 1 14

15 4 5 15
16 4 7 16

17 4 9 17
. -ia.. ... 4 11 18

19 4 13 .19

20 5 1 5 20
21 5 6 20 21
22 5 6 2 22 .

23 5 15 22 23
24 8 21 23 24 .

25 5 3 15 25
26 5 . 4 5 26 - - — -m.-K.

27 3 6 27
23 6 25 26 28 _ _

29 S 27 28 29
-30 5 7 1 30
31 5 8 30 31

.32 ... 5 , 8 2 32
33 5 16 32 33
34 - 8 .31 33 34 .

35 5 16 3 35
36 5 4 7 36 _ _

37 3 8 37
.. 38. . . 6 35. 36 38 _ . _ _ _

39 a 37 38 39
40 5 9 1 40

JOUT

41 5

42

5 •

43 5

44 8

45 5

46 — 5

47 3

48 .. 6

49 8

50 5

51 5

52 5

53 5

54

8..

55 5

56 5

57 3

58 6

59 8

6C— 5
61 5

62 5

63 5

64 5

65 5

66 5

67 6

68 6
69 8

70 5

71 5

72 5

73 7

74 5

75 5

76- Z
77 11

78. .5

79 5

80 5

81 5

82 5

83 5

84 . 5
85 5

86 5

87 5

88 6

89 6

90 3

91 1 1

92 5

93 5

94 5

95 5

96 5

97 5

98 6

40 4 1

... 2 42
42 43
43 11 7

3 45
9 46

47
4 6 48
48 49
1 50

50 51
2 52

52 53
. 53 54

3 55
1

1

56
57
56 58
58 59
60
39 61
34 62
62 63
34 64
64 65
65 66
61 67
67 68
68 69
34 70
70 71

71 72
72 73
34 74
74 75
75 76
29 77
54 78
78 79
79 80
80 81
34 82
82 83
83 84
49 85
85 86
39 87
84 88
88 89
89 90
39 91
54 92
92 93
93 94
59 95
.9 5 96
1 9 97
96 98

10
-40

17
4 1

17
- 4

10
45
47
11
12
12
18

„51

18
4

12
55
57
29
24
24
49
24
44
59
60
63
66
24
44
54
14
24
44
54
24
,_J&

44
34
19
44
59
19
34
19
19
81
86
87
34
14

44
19
44
19
49
94

JOUT

99 8 97 98 99
-10Q- VI A4~_ 49 too
101 5 14 54 101
102 5 19 101 102
103 5 59 19 103
104 8 102 103 104
105 11 54 59 105
106 7 14 19 106
107 4 69 107
108 4 73 108
109 6 107 108 109
110 11 77 90 110
111 11 91 99 111

. 112- 11 iao 104 112
113 11 105 106 1 13
114 _ - 5 110 .111 114
115 5 112 114 115
116 5 113 115 116
117 2 69
ita 2 76
119 2 109
120 2 110
121 2 111
122 2 112
123 2 113
124 2 116
125 22 117 44

PIN ASS-1£**ENTS
PIN ADJACENT 6ATES

1 l 20 30 40 50 .

2 2 22 32 42 52
3 3 25 35 45 55 - .

4 4 26 36 46 56
5 15 - 20 26 —
6 6 21 22 27
7 7 16 30 36
8 8 31 32 37 78
9 9 17 40 46

10 10 41 42 47
11 11 18 50 56
12 12 51 52 57
13 _ 13._.19
14 14 73 92 101 106
15 15 23 25
16 16 33 35
17 17 43 45 .

18 18 53 55
19 19 81 84 86 87 94 96 97 -102.

20 20 21
21 21 24
22 22 23
23 23 24 .. -

24 24 61 62 64 70 74 77
25 . 25. _ 28.

26 26 28
27 2 7- _29

JQUT

28 28 29
— 29- -29 -60- 77 — ——

33 30 31

31 31 34
32 32 33
33 33 34 -—
34 34 62 64 70 74 80 82 85 91
35 35 -38

36 36 38
37 37 39
38 38 39
39 39 61 87 91 . —
4 C 40 41
4 1 4 1 44. - - - -

42 42 43
43 43 44 - — - —
44 125 65 71 75 79 82 93 95 100
45 45 48
46 4 6 48
47--47-.-AS
48 48 49
49 49 63 85 97 100
50 50 51
51 51 54
52 52 53
53 53 54
54 54 72 76 78 92 101 105
55 55 58
56 56 58
57 57 59
58 58 59
59 59 66 83 95 103 105
60 60 67
61 61 67
62 62 63
63 63 68
64 64 65
65 .. 65 66
66 66 69
67 67 68
68 68 69
69 69 107 117
73 73 71
71 71 72
72 72 73

73 73 108
74 74 75
75 75 76
76 76 118
77 77 110
78 78 79
79 79 83

83 80 81
81 81 88
82 82 83
S3 .83 84
84 84 88
85 85 86

JOUT

86 86 89
8_7—27-—$0-

68 88 89
— 8-9— 6-9 - 9Q---

93 90 110
91 91 111
92 92 93
&3 93—94
94 94 98
$S -95 96
96 96 98
97 9 7 - 99
98 98 99
S2 9l9—11-1

100 103 112
, —

1

Q1—m-t-1432--
102 102 104

-403—103 104 - -

104 104 112
105. -105 -113- -

106 106 113
107 107 109
108 108 109—109 109 119
110 110 114 120

... Ill _L11 114 121
112 112 115 122—443 113 116 123
114 114 115
115 115 116
116 116 124

.117 44 125

LEVELLING
ELEVEL = 1 PLEVEL = - 41 J0PL2V - 124
SCANNING SEQUENCE

__ 125 .100 .112 122 95 96 93 94 .98 . 99. 111. 121 82 ,._2I 84 79 80 81 88 89
90 110 120 114 115 116 124 75 76 118 71 72 73 108 65 66 69 117 107 109

-.119 44 104 92 97 91 78 86 27 77 113-—74. -J70 —64. -6-8 - 41 43 102 103 . 85
105 59 57 58 106 19 13 63 49 47 48 67 40 42 10 45 17 46 101 54
.14 51 53 55 56 50 18 52 . 12 - 62--.34 -31- —33- -30 - 32 60 29 27 28 61
39 24 37 8 38 21 23 9 1

1

35 16 36 7 20 1 22 2 6 25 3

.1 5. _2 6 . 4 5 - —— — ...

LEA 0 F L

- --
;

..— — ...

- 1 2 3 4 5 6 7 8 9 ia 1 1

.

12 13 14. 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48._ 4 9 50 -52.—5i_5A 55 56 57 .53 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
ai £2 S3 84 85 86 87 88 . 89 90._ 9192._ 93—9 4 95 96- 97 98 99 ICO
101 1 02 103 104 105 106 107 108 109 110 Ill 112 113 114 115 116 117

0 0 Q 0 0 0 0 Q 0 0 ... a 0. 0 . 0 0 0 Q 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 C 0 35 0 0 0 0 0 ... Q . _a 0 ...0. . .0 0 0 0 0 0 0
c 0 0 0 36 37 0 0 39 0 32 33 34 0 29 0 0 0 17 18

. 19 14 15 19 0 0 0 20 21 22 . 0. 0 .89 6 9 a 10 1 1 3

join

0 0 O 0 O O 40 40 0 24 24 25 0 25 26 0 0

NUMBER Of TESTS 2 - *

TIME FOR VECTOR COMPUTATION 1 S 13285
— .. — —

NL =• 2 1571 — • •• * — — — •- - .. -.

TEST NUMBER 1

* .

PIN VALUES
—PIN 1 2 3 4 5 6 - 8 -~9. --tO- XX SZ-. 13 -44 15- - 16 17 18 19 20

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
* 43 44 45 46 47 48 -4-9 50—5-1— —» —54- - 55 56 57 58 .. 59 60 61 62

? 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

T 85 86 87 88 89 90 91 92 93 94 95 96 97 - 98 99 100 101 102 103 104
i 106 107 108 109 110 111 112 113 114 115 1 16 117

VALUE- - 0 0 0 1 . 1- -1 --Q O-—X- —0- _a.—a 0 . —t 0 1 ... 0 - 1 1 0

0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 3 0 1 0 1 a -0- — 0-—0 0- ... 4 -o - 0 0- 0 - 1 0 1 1

1 3 3 1 1 0 i 3 3 2 i 3 2 1 0 0 0 0 3 3

0 0 1 3 3 0 . _Q 1 ._.3_—i 3 —3 O— -3 2 3 1 1 1 0

0 1 3 1 1 2 3 0 2 0 0 1

PRINCIPAL INPUTS
GATE VALUE - —— — — — ~

.

1 0

c U

3 0

4 1 _ , .. —
5 1

A 1O I

7 0
- 8. 0 - — — -- — . — • - - .

9 1

13 0

11 0

12 0

13 0

14 1

PRINCIPAL OUTPUTS
6 A T E VALUE
-117 0

118 2

- t49 1

123 1

_ 121 2

122 3

123 0

124 0

TIME FOR VECTOR COMPUTATION IS 3

NL = £ 157 9

JOUT

Problem #2

_X£SX-JiUK&£R. 2 ...

PIN VALUES
PIN 1 2 3 A 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

22 23 2 A 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 AO 41
* A3 4 M A 5 A 6 A7 AS A9 50 51 52 53 5A 55 56 57 58 59 60 61 62
? 64 65 66 67 68 69 70 71 -72- -73-74 - 7S

—

76 —-77 78 -79 80- 81 82 83
T 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 1 03 1C4
i 106 107 108 109 110 111 112 113 14-4-145—116 147 — - -

VALUE 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0
1 0 1 0 1 1 1 0 - 0 0- —0 0 - 1 0 0 0 0 1 0 0
0 3 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1

- -1 3 3 1 1 -0 . 1 3- 3-—2- —t ...3-- 2 ... -1 0 0 - 0 0 3 3

0 0 1 3 3 0 0 1 3 3 3 3 0 3 2 3 1 1 1 0
Q 1 3 I I 2 3 o ._o_ 1

PRINCIPAL INPUTS

•

6ATE VALUE
1 0

2 1

3 C

4 1

5 1

6 1

7 C

8 0
9 1

13 0

11 C

12 0

1 3 0

n i

PRINCIPAL OUTPUTS
6ATE VALUE
117 0

118 2

119 1

123 1

121

2

122 3

123 0

1 2 A C

E NO OF RUN

END ONSITE PRINTOUT ON JULT 21, 1982 AT 08;A7:22
VLSI* JOUT <1)

.

ACCOUNT: 22222-PRZY8G TRAIN! A REEL! 37
SOF CTNTKCL M.CRO, OCTAL - 5 C C 1 2 0 0 0 0 C 0 0 . I = l.
AeOVc control aoro IN BLOCK 1 LOCKS *rung
SCFF»

track: 7 p-jnch: n lines/inch:
FT = S. P - 0, CT = FIELOA TA

TIME USED TC FORM COMPONENTS 13 7533

FAULT RUN NUVQcH 2

fault s

CATE TYPE OF FAULT
122 LINE 3 OF GATE 44 STUCK-AT-0

GATE ASS 1GNVFNTS
GT TP ACJACENT PINS

1 I l

2 1 2

3 1 2

A 1 A
IX,

L
C3

A
1 t

7 I 7
A 1 e

0 1

1 0 1 1 0

1 l 1 1

1

1 ? 1 l 2

1 2 1 l 2

1 A l 1 A

1 5 4 c 15
1 r. A 7 Ic

1 7 A 9 17

1
Q A 1 1 i a

l A 12 1U

2 0 5 1 5 20
2 1

s
fc 20 2 1

22 c F 2 22
23 E

1 E 22 23
2 a F. 2 1 22 24
2 5 c •3 15 25
2 5 c A E 2 c

2 7 1 e 27
2 8 fc 2 5 2fc 2 3

2<i 8 2 7 2 3 2 G

3 0 E 7 l 30
3 l

E 6 30 3 1

32 5 e 2 32
32 c

i e 22 32
34 a 2 1 2 3 3a
3 5 1

1

3 35

36 5 4

37 3 6

38 e 3 5

39 8 37
40 5 9

4 1
ez 10

42 5 1 0

43 5 1 7

44 e 4 1

45 ez 17

46 c. 4

47 3 10

46 6 4 5

49 e 47
50 c

1 1

5 l
e;

l 2

5 2 c
1 2

53 5 1 6

54 e 5 1

55 c
1 6

56 5 4

5 7 3 1 2

58 e g e

59 8 57
6 0 3 29
6 1 5 24
62 c 2 4

6 3 5 49
6 4 5 2 4

6 5 c 4 4

66 cz 5 9

6 7 6 6 0

6 6 e £ 2

6 9 o 66
70 0 2 4

7 1 5 44

72 £ 4

73 7 1 4

74 5 24
7 5 5 4 4

76 7 5 4

77 1 1 2 4

7 3 c 6

79 5 44
80 & 24
81 C

1 9

e2 e 4 4

6 3 5 c c

84 C
l 9

a 5 C 2 4

6 5 5 l 9

67 C
1 9

6 6 6 £ l

3 9 6 £ 6

90 £ £ 7

9 l 1 l 24
92 c

1 4

9 3 c 44

I

36

3a
39
4-0

4 1

42
43

1 1 7

45
46

4 3

49
50
5 l

52
5 3

54
5 5

5 c

56
59

61

62
62
64
6 5

6 6

67
6 3

69
70
7 1

72
73
74
7 5

76
77
76
79
80
>31

52
53
84
es
ee
6 7

3 3

39
90
9 1

9 2

9 3

7

37
36
3 3

1

40

2

4 2

43
3

9
47
4o
46

1

50
2

52
= 3

3

1 1

57
56
53
60
29
34
62
34
€ 4

6 5

6 1

67
66
34
70

7 1

72
34
7 4

75
29
34
73
79
60
34
62
S3
49
6 5

39
6 4

£ 8

39
3 9

34
9 2

94 5 1 5 53 54
55 c 4 4 55 95
56 e 15 55 96
5 7 a 4 5 19 9 7

5 8 t 5 4 56 58
55 e 5 7 5e 99

100 l l 4 4 45 1 0 C

l 0 1
c.

1 4 54 1 0 1

102 e 15 10 1 102
103 c 55 1 5 1 03
IC4 6 1 C 2 103 1 04
1 05 l 1 54 55 1 05
106 7 1 4 15 106
107 5 6 5 l C7
10rt 4 7 2 ice
105 t 1 C 7 i oe l 0 5

1 1 0 \ 1 7 7 50 1 1 0

1 1 l 1 l 5 1 59 1 1 1

1 1 2 l 1 IOC 104 1 1 2

1 l 3 1 1 1 0 £ 106 1 1 3

1 1 4 K
1 l C 1 l 1 l 1 4

1 1 5 c
l l 2 1 1 4 1 l 5

1 1 6 C
1 1 2 1 1 £ 1 1 6

l 1 7 2 65
1 1 d 2 7 6

1 1 5 2 1 C 5

120 2 1 1 0

1 2 1 2 1 1 1

122 2 l 12

12 3 c. 1 1 2

124 2 1 1 6

12 8 1 2 1 2 C £ t 5 24
\?<~ 1 2 1 2 7 8 l 6 34
1? 7 1 2 1 2 1 1 1 2 1 8 54
12 8 1 2 i 4 c 6 15 29
12 5 l 2 3 4 7 3 i 6 39
120 1 3 3 4 5 l 0 1 7 49
13 l l 2 2 4 1 1 1 2 1 3 59
13 2 2 2 1 1 7 44

PIN A ?.S IGNVEM S

PIN 4C JACEN 1 G 4 T£i S

1 l 1 25 12 6 40 1 27
2 2 1 2£ 126 42 1 2 7

3 i
1 2 8 1 29 1 30 1 3 1

4 4 1 28 1 29 1 30 l 3 1

5 c
1 £ 1 25 l 2 3

6 6 l 2 £ 123
7 7 l 6 1 26 129
8 d 126 1 29 7 8

5 5 1 7 40 l 30
10 1 C 4 1 4 2 1 30
l 1 1 1 i e 127 1 3 l

1 2 1 2 1 2 7 1 2 1

1 3 1 2 1 5

1 4 1 4 73 52 1 0 l l 0 6

1 5 1 £ 1 26 12a

1 6 1 6 126 129
1 7 1 7 43 1 30
l 3 i a 127 131
l 9 1 9 3 1 34
20 20 2 1

2 1 2 l 24
22 22 23
23 23 24
24 125 6 1 62
25 25 23
26 26 2 e

2 7 27 25
2e 2 c 25
25 123 6 0 77
30 3 0 3 1

3 1 3 1 34
32 32 3 3

33 33 34
34 12 6 6 2 £4
35 35 3 3

3 6 36 33
37 37 25
33 3 6 35
35 125 6 1 37
40 4 0 4 1

4 1 4 1 44
4 2 4 2 4 3

43 4 3 44
4 4 13 2 65 7 1

45 45 4 3

46 4 6 4 2

47 47 4 5

48 43 45
4 5 1 30 63 35
5 0 50 6 l

5 1 5 1 5 4

52 5 2 e -3

53 £
~

5 4

5 4 1 2 / 7 2 76
c s 5 5 5 3

56 56 56
5 7 57 55
53 5 3 59
5 9 1 3 1 6 6 83
to 60 6 7

£ 1 6 1 6 7

62 62 t 3

63 6 3 6 3

5 4 6 4 6 5

65 6 5 6 6

ft 6 6 6 5

l 7 6 7 63
6 3 6 3 6 5

6 5 6 5 1 C7 1 17

7 0 7 C 7 l

71 7 1 7 2

72 7 2 7 3

73 73 1 C 3

8t 67 94 96

64 70 74 77

70 74 80 32

9 i

75 79 32 93

57 ICO

73 52 101 105

93 103 105

97 102 103

S 5 51

55 100

1 06

i

I

74 7 4 7 £

7 £ 7 £ 76
76 7 6 l 1 a

7 7 7 7 1 1 c

78 7 3 75
75 7 5 60
PO eo e i

F 1 6 1 6 6

8 2 3 2 6 2

83 63 € 4

P 4 64 66
e-j 6 £ 6 6

€ 6 3 6 65
5 7 fc 7 50
p.e 3 6 e5

8 5 a 5 50
50 50 1 1C

5 1 5 1 1 1

1

52 5 2 5 2

5 3 4 3 54
54 5 4 5 6

55 5 £ 5 6

5 5 56 5 P

<57 5 7 55
5 P C fi 55
5 5 5 5 l l 1

100 1 0 C 1 1 2

1 0 1 1 0 1 1 C 2

102 1 0 2 1 C 4

103 102 1 C 4

1 0 4 1 0 4 l 1 2

l C 5 106 1 12

1C6 106 1 1 2

1 G 7 1 C 7 1 C 5

i c a 106 1 C5
1 C 5 10 5 l 1 5

1 1 0 1 1 0 1 1 4 120
1 1 i 1 l 1 1 1 4 12 1

1 1 2 1 1 2 1 16 122
1 1 3 1 l 2 t 1 £ 123
1 1 4 1 1 4 l 1 £

1 1 £ 1 l 6 1 l 6

1 1 6 1 1 6 1 2 4

1 1 7 4 4 1 2 2

LF.VSLL I NO
r L_f Vr L - l PLc:VFL =

'CANNING SbCUENC.;
13 2 1 00 l 1 2 122 55 5 6 5 3 54 53 95
50 1 1 0 1 2 0 1 1 4 l 1 5 1 1 6 124 75 7c 1 13

1 1 5 4 4 l C 4 52 5 7 5 1 7a £ 6 87 77
1 05 12 1 1 C 6 1 5 1 3 63 130 1 7 67 40
12 6 6 0 126 £ 1 1 25 3 4 3 1 6 7

LcAChL
1 2

"3 4 c 6 7 3 c 10

4 1 70PLP.V =

l i i l 21 82 33 34. 75 30 3 1 88 85
7 1 72 73 1 03 68 do c 9 1 1 7 l 07 1 05

1 l 3 74 70 64 68 41 43 102 103 85
5 42 l 0 1 0 1 1 2 7 14 1 2 l 3 1 l 62

1 2 £ 1 2 6 1 3 ti

1 l 12 13 14 1 5 16 1 7 1 8 1 5 20

21 22 23 24 25 26 2 7 2 3 29 30 3 1 32 3 3 34 35 36 37 36 39 40
4 1 42 m2 44 45 4

1

47 48 49 50 51 52 5 3 54 55 56 57 56 59 60
e i tz 6 3 64 65 66 6 7 68 69 70 71 72 73 74 75 76 77 78 7 9 80
e i P 2 83 84 85 86 87 c? 99 90 91 92 9 3 94 9S 96 9 7 93 99 100

1 0 X 1 02 1 C 2 l C 4 l 05 106 107 1 0 6 1 C 9 1 1 0 1 1 l 1 12 1 1 3 1 1 4 l 1 5 1 1 6 1 17

c C C 0 0 0 0 C 0 0 0 0 0 0 0 0 C 0 0 0

0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 i ~
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 c 0 36 3 7 0 0 39 0 22 33 34 29 0 0 0 17 i a

19 1 4 1 5 1 9 0 0 0 20 2 t 22 0 0 8 9 t 9 0 1 0 1 1 3

0 0 C 0 0 0 40 40 0 24 24 25 0 25 2 6 0 0

MjVFP.h CF TESTS = 3

TIMii FCR VFCTCR CCVPUT47ICN IS 2039a
NL = 234 1 C

ritsr num ff.r i

PIN VALUES
P IN 1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 1 5 16 17 13 l 9 70

???? 2 2 2 4 24 25 2 6 27 26 29 30 31 32 33 34 35 36 3 7 28 39 40 41

???* 42 44 45 46 47 48 49 50 5 1 52 53 54 55 56 57 56 59 c 0 6 1 62
???? 64 6 5 66 67 6 3 69 70 7 l 72 73 74 75 76 7 7 78 79 ^O 6 1 6 2 ,1 -3

? 7 ? T £ 5 66 P. 7 33 89 99 9 l 92 93 94 95 96 97 98 99 100 101 1 02 1 03 1 04
77? I 106 1 C 7 108 1 C 9 1 1 0 1 1 1 1 1 2 l 12 1 1 4 1 1 5 1 1 6 1 1 7

VALUE; 0 1 0 1 l 1 0 0 l 0 0 0 0 1 0 1 0 1 1 -1
- 1 - 1 1 - 1 - 1 - 1 - 1 0 - 1 -1 - 1 -1 1 - 1 - 1 - 1 - 1 1 C 3

7 77? 0 a -1 - 1 - 1 - 1 0 -

1

- 1 - 1 -1 l -l - 1 - 1 - 1 1 0 1 1

7 77 ? 1
3

3 1 1 0 1 3 3 2 1 3 2 l 0 0 0 c 1

7 7? 7 G 0 l 3 3 c c 1 3 3 3 3 0 3 2 3 1 1 1 0

7 7 7 ? 0 l 3 1 1 2 3 0 2 0 0 1

PRINCIPAL INFUS
CATE V A L U r-

1 0

2 1

3 0

4 1

5 l

t l

7 0

8 0

9 1

1 0 0

1 1 0

1? 0

1 3 0

14 1

PRINCIPAL CUIFUTS
GATF. VAL Jr.

117 0

i i a 2

1 19 1

w

to

21 22 23 24 25 26 2 7 23 29 30 3 l 32 33 34 35 3o 37 33 39 40
4 1 42 4 2 44 45 46 47 4e 49 SO 51 52 53 54 55 5c 57 53 59 6 0

e i 62 6 3 64 65 66 6 7 63 69 70 71 72 73 74 75 76 77 78 79 30
e i F 2 62 e 4 35 36 37 63 39 90 91 92 9 3 94 95 96 97 93 99 100

101 1 02 1 C 2 1 C 4 105 l 06 l C 7 1 0 £ 1 09 1 1 0 1 1 1 1 12 l 1 3 1 1 4 115 lie 1 1 7

0 G C 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0

0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -> = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 c 0 36 3 7 0 0 39 0 22 33 34 0 29 0 0 0 17 1 9

19 1 4 1 5 19 0 0 0 20 2 1 22 0 0 3 9 t 9 0 10 l 1 3

0 0 c 0 0 0 40 40 0 24 24 25 0 25 26 0 0

i;

NUVFF.h cf tfsts 3

NL = 234 1

C

TIMli FCR VFCTCft CCVPUTATICN IS 20890

rr-sr NU« Fr.fi l

\

PIN V SLUE

S

P IN 1 2 3 4 5 6 7 g 9

???? 2 2 2 J 24 25 2 6 27 28 29 30
???* 42 4 4 45 4 6 47 43 49 50 5 1

77?? 64 6 £ 66 6 7 6 9 69 70 7 1 72
? ? ? T €6 66 f. 7 3 3 69 90 9 1 92 93
? 7? I 106 1 C 7 103 109 1 1 0 1 1 1 l l 2 1 12 1 1 4

V ALUc 0 1 0 1 l 1 0 0 1

- 1 - 1 1 - 1 - 1 -l - 1 0 - 1

? 77 7 0 3 -1 - 1 - 1 - 1 0 -

1

- 1

???? 1
•» 3 1 1 0 1 3 3

??? ? 0 0 1 3 3 0 c 1 3

7 ??? 0 1 3 1 1 2 3 0 2

10 1 1 1 2 13 1 4 1 5 1 6 l 7 18 l 9 20
31 32 33 34 35 36 3 7 38 39 40 41

52 53 54 55 56 57 53 59 6 0 6 1 62
73 74 75 76 7 7 78 7 9 *0 6 1 32 c *a

94 95 96 97 98 99 l 00 10 1 1 02 1 03 1 04
1 5

0

1 1 6

0

1 1 7

0 0 1 0 1 0 1 1

.

-1 I

- 1 -1 -1 1 - 1 - 1 -1 - 1 1 C 0

- 1 -1 1 -l - 1 -1 -1 1 0 1 l

2 1 3 2 1 0 0 0 c 3 3

3 3 3 0 3 2 3 1 1 1 0

0 0 1

PR INC 1 PxL I NFL 1 S

G * Tf- VSLUr
l 0

.? 1

3 0

•+ 1

5 l

6 l

7 0

A 0

9 1

1 0 0

1 1 0

12 0

1 3 0

14 1

PRINCIPAL CLIFL1S
CATF. VAL Jr.

t 17 0

t l 6 2

119 1

120 1

12 1 2

122 3

1 23 0

124. 0

NL = 234 35

TIME FOR VECTOR COMPUTATION IS 22

TrST NUMF&P 2

PIN VALUES
° IN 1 2 3 4 5 £ 7 a 9 10 1 1 l 2 13 l 4 1 5 16 1 7 l 8 1 5 20

??? ? 22 2 2 24 25 2 6 2 7 28 25 30 31 32 33 34 35 36 37 38 33 40 41
7 ? ?* 43 44 45 46 47 48 49 50 5 1 52 53 Sa 55 56 67 58 55 60 6 1 62
???? 6 4 6 5 e 6 e 7 63 65 70 71 72 73 74 75 76 7 7 78 79 80 a i 8 2 S3
7 ??T £ = £ 6 97 £ 3 £9 90 51 52 53 34 95 9o 57 53 59 1 00 10 l 1 02 l C 3 1 3a

7? ?I 1 c<- 1 C 7 133 109 l l 0 l 1 1 1 12 1 l 3 1 1 4 1 1 5 1 1 6 1 1 7

VALUE. c l 0 1 1 0 C 0 l 0 0 0 0 1 0 1 0 1 1 -

1

-
1 - 1 1 - 1 -1 - 1 - 1 0 - 1 -1 -1 - 1 1 - 1 - 1 - 1 -

1

1 C 0

7? 7? 0 3 -l - 1 -l - 1 0 -

1

- 1 -l -1 1 - 1 - 1 - 1 - 1 1 0 1 l

???? 1 2 3 1 1 0 1 _2 3 2 1 3 2 1 0 0 0 0 1 3

7 77? 0 0 l 3 3 0 0 1 3 3 3 3 0 3 2 3 1 1 1 0

???? 0 l 3 1 1 2 3 0 2 0 0 1

PRINCIPAL INPUTS
GATE VALUE

1 0

2 1

3 0

4 t

5 l

f 0

7 0

a c

? i

1 0 0

1 1 0

12 C

1

3

0

14 1

PRINCIPAL OUTPUTS
GATE V a l

U

p

1 l 7

1 l 3

1 IT

1 20
I 12 1

;

1 22
1 23
1 24

0

2

1

1

2

3

C

C

NL - 23334
TIME FOR VECTOR COMPUTATION IS 1 55

Tf-ST NUMErP 3

=IN VALUES
FIN 1 2 3 4 5 6 7 a 9 10 1 1 12 13 1 4 1 5 16 1 7 i e l 9 20

???? 22 23 24 25 26 27 28
1

29 30 31 32 33 34 35 36 37 38 39 •0 4 1

? 77* 43 44 45 46 47 48 49 50 5 l 52 53 54 65 56 57 58 59 60 6 1 62
? ?7? e a 6 5 66 67 63 69 70 71 72 73 74 75 76 77 73 79 80 3 1 82 3 3
? ? ? T 65 ae 87 88 eo 90 9 1 92 93 94 95 96 97 98 90 l 00 101 1 02 1 03 1 04
???I l C6 1 C 7 103 109 1 l 0 1 1 1 1 12 1 12 1 1 4 l 1 5 1 l 6 1 l 7

VALUE C 0 0 1 t 1 0 0 1 0 0 0 0 1 0 l 0 1 1 - 1

- 1 - 1 1 - 1 -

1

- 1 -1 0 - 1 - 1 -1 -1 1 - 1 - 1 -l - 1 1 C 0

2 7 7 ? c 3 -l - 1 -1 - 1 0 - 1 - 1 -l -1 1 -1 - 1 - 1 - 1 1 0 1 1

???? 1 2 3 1 l 0 1 3 3 2 1 3 2 1 0 0 0 0 3

7 ??? c 0 1 3 3 0 0 1 3 3 3 3 0 3 2 3 l l i 0

7 ??? 0 l 3 1 l 2 3 0 2 0 0 1

JP INC I PAL INPUTS
GATE VALtr:

1 0

2 0

3 0

A- I

5 1

6 1

7 0

3 0

<5 I

1 0 0

1 1 0

12 0

13 0

14 1

PRINCIPAL CUTPUTS
GATS; V AL Ur;

117 0

113 2

119 1

120 1

121 2

122 3

123 C

1 24. 0

“NO OF PUN

FNO OF SCF FILE, ACCOUNT: 33232-PRZYBO PCY= 411, SPt = 475, PGS-= 7, CR9 =

Problem It3

ACCOUNT: 33232-°RZYaO TRAIN! A REEL: 37
SDF CCNfRCL aORO. OCTAL - 5 0 C 1 30 C 0 0 0 00 , I = l.

j ABOVE CONTROL WORD IN BLOCK l LOOKS *RONG

|

S OF F

I

track: 7 pjnch: n lines/incp:
FT = S. P = 0. CT = F I 2L0m r a

TIME USED TO FORM COMPONENTS 13 1SP75

I

FAULV RUN MN 6 ER 3
i

'

|

fall i s

GATF lYO£ CF F \ JLY
146 LINE 3 OF GATE

i

GAT c A5S1C-NMFN7S
GT IP ADJACENT PINO

1 1. l

2 1 2

3 l
i

4 1 4

5 1
K

ft 1 A

r 1 7

3 1 e

R 1 c

1 0 1 1 0

1 1 1 1 1

1 2 1 1 2

l 3 1 1 3

1 l 1 4

l 3 4 a
1 5

l
* A 7 1 6

l 7 4 <; 1 7

i a 4 1

1

13

l y A 1 3 1 ?

20 c
I 5 20

2 1
c 6 20 2 1

22 c £ 2 22
23 c

l £ 22 23
2 -* 3 2 1

T 1
Cm 24

25 c 3 1 5 25
2 ft 5 4 r: 26
2 7 3 6 2 7

28 6 2 5 26 28
20 c 27 28 2R
30 G 7 1 30
3 1

e s 30 3 1

32 K p 2 32
3 3 c

1 6 T O 3 3

3 A 3 2 1
“3 "1 34

3 3 0 l 6 3 35

*4 STUCK-AT-0

,

36 S 4 7 36
37 P 27
38 6 3 c 36 38
39 e 37 38 39
40 5 9 1 40
4 1

e 10 40 41
42 5 10 2 42
43 5 17 42 4 3

44 e 4 1 43 1 1 7

45 c
1 7 3 45

4 6 5 4 9 46
47 3 10 47
40 6 45 4.0 48
49 8 4 7 48 49
5 0 c

l 1 1 50
5 1 5 1 2 50 5 1

52 5 1 2 2 52
5 3 c ie 52 53
54 8 £ l 53 54
5 5 c 16 3 55
56 5 4 1 1 56
5 7 3 1 2 57
50 6 c c 56 58
59 8 5 7 58 59
60 3 29 60
t 1 5 2 4 39 6 1

62 5 24 34 62
63 c 49 6 2 62
6 4 c 24 34 64
t 5 5 4 4 64 65
66 6 59 65 66
67 6 6 0 6 1 67
6e 6 £3 67 63
6 9 a 6 6 68 59
70 c 24 34 7 0

7 1 5 44 70 7 1

72 c 5 4 71 72
73 7 14 72 73
74 5 24 24 74
7 5 5 4 4 74 75
76 7 5 4 75 76
7 7 1 1 2 4 29 77
7 8 5 e 54 78
79 5 44 73 79
PC 3 34 79 30
e i

c 19 80 01
02 e 4 4 34 82
03 5 5 9 £2 83
04 5 1 9 03 04
35 5 24 •+9 35
66 5 l 9 85 36
67 c

1 9 29 87
6 0 6 6 1 04 30
09 6 £6 6 0 89
90 e 67 8 9 9 0

9 l i l 3 4 39 9 1

92 c.
l 4 54 92

33 c 4 4 92 9 J

I

I

I

;

}

94 5 19 93 94
95 5 44 59 95
96 c 19 9 5 96
97 5 49 19 9 7

96 6 94 96 98
9 9 6 9 7 98 99

100 1 1 4 4 49 1 0 0

l 0 1 5 1 4 54 1 0 1

102 c 19 10 1 102
1 03 5 59 19 1 03
104 Q 102 1 03 1 04
105 1 1 54 5 3 105
106 7 14 19 106
107 4 6 9 l 07
108 4 7 2 109
109 6 1 C7 1 C3 109
1 l 0 1 1 7 7 90 l l 0

1 1 1 1 1 « 1 99 1 1 1

1 1 2 l 1 1 C C 104 1 1 2
113 1 l 1 C5 lOo 1 1 3

1 1 4 c
1 10 1 1 1 1 1 4

l 1 5 c
1 1 2 1 14 1 1 5

1 l o e
1 1 2 ns 1 1 6

l 1 7 2 69
1 1 a 2 76
1 1 9 2 1 C 9

120 2 1 1 0

12 1 2 1 1 1

122 2 l 12
123 2 1 1 2

124 2 1 1 6

125 1 2 1 2 e 6 1 5 24
1 2 € 1 2 1 2 7 9 1 € 24
127 1 2 1 2 1 1 1 2 1 3 54
128 1 2 2 4 5 6 15 29
129 1 2 2 4 7 oW l 6 2 9

130 1 3 3 4 9 1 0 1 7 49
131 1 2

-3 4 1 l 1 2 l 3 59
132 l 4 24 34 44 59 66
133 1 4 19 34 44 59 64
134 1 4 1 4 1 9 44 54 94
135 1 4 1 10 1 1 1 1 l 2 1 1 2 L 1 6

13 6 1 5 14 24 34 44 £4 73
137 1 6 6 0 6 1 62 66 69
138 1 6 6 1 84 96 87 90
L 3 9 1 7 24 24 49 63
140 1 7 1 9 34 49 8 6

14 1 1 7 l 9 44 59 9 €

1 42 1 7 1 * 1 9 54 102
143 1 £ 2 4 34 44 54 76
144 1 9 9 4 96 9 7 99
145 2 6 6 19 34 44 54 6 1

146 2 2 1 1 7 44

PIN ASSIGNVENTS
PIN ADJACFM C-AT3 5

I 1 125 125 40 127

2 2 125 12b 42 127
3 3 126 l 29 130 12 l

4 4 126 1 29 l 30 1 3 1

CZ 5 1 £ 125 l 2 6

e 6 125 129
7 7 It l 26 129
€ e 126 129 l 45
9 9 1 7 40 130

1 0 1 0 4 1 42 1 30
1 1 1

1

16 1 27 13 1

1 2 l 2 1 27 131
13 l 3 19

1 4 1 4 136 134 1 42 1 06
l 5 1 5 125 128
i e 1 6 126 129
17 1 7 4 2 1 30
1 .4 1 2 1 2 7 131
19 l 9 1 45 133 140 87
20 2 C 2 1

21 2 1 24
22 22 22
23 23 24
24 12 5 6 1 139 132 l 36
25 25 26
2b 26 28
27 27 29
2 e 26 29
29 128 60 77
30 3 0 2 1

2 1 3 1 24

2 2 22 23
33 32 24
34 126 1 29 132 136 143
35 35 36
36 36 3 8

37 37 29
3a 36 39
39 129 6 1 67 9 1

40 4 0 4 1

4 1 4 1 4 4

42 42 4 2

*3 43 44
44 146 132 1 36 1 43 1 45
45 4 5 4 6

46 46 46
47 47 49
46 4 6 49
49 130 129 140 97 1 0 0

50 50 5 1

6 l 5 1 5 4

52 52 C T

53 53 5 4

5 4 127 1 26 14 3 1 45 134
c c ^ C 5 £

5 6 56 56
57 57 5 9

56 5 6 59
59 13 1 12 2 133 1 4 1 102

134 141 97 142 103 74

143 77

145 133 140 91

133 154 141 100

142 105

105

60 60
61 6 1

62 62
63 135
64 64
65 65
66 132
67 67
68 66
65 137
70 70
7 1 7 1

72 72
73 136
74 74
75 75
76 143
77 77
78 78
75 75
60 80
8 l 145
e2 82
83 83
84 133
85 85
ea 140
8 7 87
as 88
85 e5
50 139
5 1 9 l

52 5 2

53 5 3

54 134
55 55
56 l - 1

57 97
58 56
59 144
100 100
101 101
102 142
103 1 03
104 10 4

105 105
106 106
1 C7 1 C 7

109 ice
1 C 5 105
1 1 0 1 1 0

1 1 1 1 1 1

1 1 2 1 1 2

1 1 3 1 13

1 1 4 1 1 4

l 1 5 1 l 5

1 l 6 135
1 1 7 44

127
127
t 2

I 2 7

6 £

66
13 7

68
65

1 C7 117
7 1

7 2

72
i c a

7 £

7 €

I I e

1 l 0

75
80
e i

138
82
€ 4

1 28
88

12 e

138
€5
50

l l 0

1 1 1

52
54

l 44
58

l 5 4

144
55

1 1 1

l 12

1 C 2

104
1 04
1 12

1 12

1 1 2

1 C 5

1 C5
1 l 5

128 120
135 121
128 122
125 123
1 1 5

1 1 8

124
1 46

LEVELL I NG
FLEVEL = 1 FLEVEL =

SCANNING SECUENCE
146 100 1 12 1 22 l 4 1 134 144 1 1 l 121 133
13? 137 1 l 7 IC7 109 1 19 44 104 97 91
4 l 4 3 17 142 103 1 9 13 129 8 16

l C6 14 6 1 5 5 40 9 1 42 10

L 5 ADFL
1 2 4 5 6 7 8 9 1 0

21 22 2 2 24 25 26 27 2 3 29 30
4 1 42 4 2 4 4 45 46 47 46 4 9 £0
6 1 tz 63 64 65 t>6 67 63 69 70
61 82 c 3 £4 85 £6 37 88 89 90

101 l 02 1 C 2 t 0 4 105 106 107 ioe 109 1 10

0 0 C 0 0 0 0 c 0 0

c c 0 0 0 0 0 0 0 0

0 0 c 2 1 0 0 0 0 0 0
0 0 c 0 0 22 0 c 24 0

12 0 C l 2 0 0 0 c 0 13
C c c 0 0 0 25 25 0 15

26 TOPLcV * 71

14 5 1 38 1 10 120 135 1 24 l 43 1 1 3 13* l 08
140 87 77 1 l 3 60 61 139 130 1 2C 1 25

7

2

129 1 05 131 127 3 4 12 19 1

1

1 1 1 2 1 3 1 4 l 5 l 6 17 l 8 19 20
3 1 32 33 34 35 36 37 36 29 40
5 1 52 53 54 55 56 57 59 59 60
71 72 73 74 75 76 77 73 79 60
91 92 93 94 95 96 97 99 99 100

1 1 1 l 1 2 1 1 3 1 l 4 1 l £ 1 16 l l 7

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 20 0 0 0 0 0 0 0
0 0 0 7 0 7 0 0 3 3

l 5 l 5 0 0 0 0 0

NUMBER OF TESTS 5

nl = i ee7cc
TIME FCR VECTOR CCMP'JT AT ION IS 205657

TEST NUMBER 1

FIN VALUES
PIN 1 2 3 4 5 6 7 8 9 10 1 1 12 13 1 4 l 5 16 17 1 6 t 9 20

???? 22 c — 24 2 £ 2 £ 2 7 28 29 30 31 32 33 34 35 36 37 33 39 40 A 1

???* 43 44 45 46 47 49 49 50 S 1 5 2 53 54 55 56 5 7 59 59 60 6 1 62
? ??? 6 4 6 £ 66 67 68 69 70 71 72 73 74 75 76 77 78 79 90 8 l 8 2 6 2

? ??T E £ £6 37 68 89 90 9 1 92 93 94 95 96 97 93 99 1 00 101 1 02 1 03 1 04
? ??I 1 Ct 1C 7 10 9 1 09 1 10 1 1 l 1 12 1 13 1 l 4 1 15 l 1 6 1 1 7

VALUE 0 1 1 0 I 1 1 0 1 1 1 0 0 1 0 0 0 0 1 - t

“ - 1 - 1 1 -1 -1 - 1 -1 0 - 1 - 1 -1 - 1 l - 1 - 1 -

1

- 1 . 1
n 0

7 77? 0 2 -l -1 - 1 -1 0 -

1

- 1 -1 -1 l -l - 1 - 1 - 1 l 0 1 -

1

???? - 1 - 1 3 - 1 - 1 0 -1 -

1

- 1 2 -1 -l 2 l -1 -l -l 0 - 1 -

1

???? - 1 C l -1 -1 0 0 -l - 1 3 -l 3 0 - 1 2 3 - 1 l 1 0

? 77 ? 0 1 3 l 1 2 3 0 - 1 -l 0 1

PRINCIPAL INPUTS
GATE VALUE

1 0

2 1

3 1

4 0

5 I

6 1

7 1

e o

9 1

1 0 l

1 t 1

12 C

13 0

14 1

PRINCIPAL CLTPUIS
GATE VALUE
117 0

118 2

119 1

120 1

12 1 2

122 3

1 23 0

1 24 0

TIME FOR VECTOR COMPUTATION IS 103
NL = 1868C6

TEST NUMEcfi 2

FIN VALUES
PIN 1 2 3 4 5 6 7 8 9 1 0 1 1 l 2 13 1 4 1 5 1 6 1 7 1 8 1 9 20

???? 2 2 22 24 25 2 6 2 7 28 29 30 3 l 32 33 34 35 3e 37 38 39 40 4 1

? 77* 42 44 45 4 O 47 43 49 50 5 l 52 53 54. 55 56 57 58 59 to vJ 1 62
777? 6 4 t 5 65 67 6 3 69 70 7 1 72 73 74 75 76 7 l 73 79 30 81 3 2 83
7 7 7T 65 66 87 8 d 89 90 91 92 93 94 95 96 97 93 99 l 00 1 0 1 1 02 l 0 2 1 04
? 77 I 1 C t l C 7 108 109 l 10 1 1 1 l 1 2 1 13 1 14 1 1 5 1 1 6 1 1 7

V4UJR 0 1 l 0 C 0 1 0 1 l 1 0 0 1 1 0 0 0 1 -l
-

1

-1 1 - 1 -1 -1 - 1 0 - 1 - 1 - 1 - 1 1 - 1 -l -l -1 1 C 3

7 77? 0 T - 1 - 1 - 1 - 1 0 - 1 - 1 -1 - 1 1 - 1 - 1 - 1 - 1 1 0 1 -1
???? - 1 - 1 3 - 1 - 1 0 - 1 - 1 - 1 2 -l -l 2 1 -1 -1 - t 0 - 1 -1

7 7 7 7 -

1

0 1 - 1 -l 0 0 - 1 - 1 3 - 1 3 0 - 1 2 3 - 1 1 1 0
7 77 7 c 1 3 1 1 2 3 0 -1 -1 0 1

PRINCIPAL INPUTS
GATE VALUE

1 0

2 1

3 1

4 0

5 0

f 0

7 1

8 0

9 1

1

0

l

1 1 1

12 0

13 0

1 4 l

PRINCIPAL CU7=UTS
G A r= VALUE
117 0

118 2

119 1

120 1

12 1 2

122 3

123 0

1 24 0

TIME FCR VECTOR COMPUTATION IS 246
NL = 137059

TEST NUMEEP 3

PIN VALUES
P IN 1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 l 5 16 17 18 1 9 20

???? 22 23 24 25 2 6 27 28 29 30 31 32 33 34 35 36 3 7 33 39 40 4 1

???* 43 44 45 46 47 43 49 oUl 51 52 53 54 55 56 57 53 59 6 0 6 1 62
. ???? 6 4 £5 66 6 7 63 69 70 71 72 73 74 75 76 77 73 79 30 ei 32 83

7 7 ?T as 66 8 7 aa 69 90 91 92 93 94 95 9o 97 CD 99 1 00 101 1 02 1 03 1 04
777 1 1 C6 1C 7 ioa 109 l 10 1 1 1 1 12 113 l 1 4 1 15 1 16 1 1 7

VALUE C a l 0 1 1 1 0 1 l 1 0 0 i 0 0 0 0 1 -1
~ -

1

- i l -1 -1 - 1 -l 0 - 1 - 1 -1 -1 1 -

1

-1 -1 -

1

1 C 0

???? 0 3 -i -

1

-1 - 1 0 - 1 - 1 -1 -1 1 -1 -l -1 -1 1 0 1 -1

7 77 ? -

1

- 1 3 -1 - 1 0 -1 -l - 1 2 -1 - 1 2 i -1 -l -l 0 - 1 -1

7 77? -

1

0 1 -l - 1 0 0 -l - 1 3 -1 3 0 -l 2 3 -1 1 1 0

7 77 ? 0 1 3 1 1 2 2 0 - 1 -1 0 1

PRINCIPAL INPUTS
CATE VALUE

1 C

? 0

3 1

4 0

5 1

6 l

7 1

a o

s 1

1 0 1

1 1 1

12 0

1 3 0

14 1

PP INCIPAL CU1FU IS

VALUE
117 0

113 2

IIP 1

120 1

12 1 2

122 3

123 0

l 24 0

TIME F OH VECTOR CCMPUTATICN IS 74

NL = 1=7136

TEST NUMEF.R 4

PIN VALUES
PIN 1 2 3 4 5 e 7 3 9 10 l 1 12 13 l 4 1 5 16 17 1 3 1 9 20

???? 22 23 24 2 5 2 6 27 23 29 30 31 32 33 34 35 36 37 33 39 40 4 1

???* A3 A 4 45 46 47 48 49 50 5 1 £ 2 53 54 55 5 6 5 7 53 5 9 60 5 1 62
???? t 4 es 66 6 7 68 69 70 7 l 72 73 74 75 76 7 7 7 8 79 ao a l 32 8 3

? 7 ? T 65 ee 87 aa 39 90 9 1 92 93 3A 95 96 97 98 9 9 1 00 1 0 1 1 02 1 03 1 04
7 7 71 ice 1 C 7 10 3 109 1 1 0 1 1 1 1 12 l 1 3 1 14 1 1 5 l 1ft l 1 7

VALUE 0 0 1 0 0 1 l 0 1 1 1 0 0 1 1 0 0 1 - 1

-

1

- 1 l -i - 1 - 1 - 1 0 - 1 - 1 -1 -l 1 - 1 - 1 - 1 -1 1 C 0

7 77 ? c 3 -1 -l -1 - 1 0 - 1 - 1 - 1 -l 1 -l - 1 - 1 - 1 1 0 I -

1

7 77? - 1 - 1 3 -

1

- 1 0 -1 -1 - 1 2 -1 -1 2 1 -1 -1 -1 0 - 1 -1

7 ??? -

1

0 1 -

1

- 1 0 0 - 1 - 1 3 - 1 3 0 - 1 2 3 -

1

1 1 0
7 7? 7 0 1 3 l t 2 3 0 - 1 -1 0 1

PRINCIPAL INPUTS
GATE VALUE

1 0

2 0

3 1

4 0

*5 0

6 1

7 I

a o

<3 i

i o 1

i l l

12 0

1 3 0

1 A 1

PRINCIPAL CUTPUTS
GATE VALUE
117 0

1 IS 2

119 1

l 20 1

12 1 2

122 3

123 0

12 A 0

TIME FOR VECTOR COPUTAT ION IS € 1

NL = 1372 C 1

TEST NUMEFR 6

PIN VALUES
'pin i 2 3 4 5 6 7 a 9 10 1 l l 2 13 1 4 1 5 16 17 i a 1 S 20

|

777? 22 22 24 25 26 27 28 29 30 31 32 33 34 3 5 3c 37 38 39 40 41

???* 43 44 4 5 46 47 48 49 50 51 5 2 53 54 55 5 6 57 5 3 59 60 6 1 62

7777 64 6 5 66 67 63 69 70 7 1 72 73 74 75 76 7 7 73 79 80 8 l 32 8 3

7 7 7 T c 5 f ft 37 38 39 9 0 9 1 92 93 94 95 96 9 7 93 99 1 00 1 0 1 t 02 l C 3 1 04

i

7771 ice 1C 7 10 3 1 09 1 1 0 l 1 1 l 12 1 13 1 1 4 1 l 5 1 l 6 1 1 7

VALUE' c C l 0 C 0 I 0 l l 1 0 0 1 1 0 0 0 l - 1

-

1

- 1 l -I - 1 - 1 - 1 0 - 1 - 1 - 1 -l 1 - 1 -1 -

1

- 1 l C 0

? ?? 7 G
"3 - 1 - 1 - 1 - 1 0 -

1 - t - 1 -1 1 -t - 1 - 1 -

1

1 0 1 -1

|

???? - 1 - 1 3 - 1 - 1 0 - 1 -l -l 2 -1 - 1 2 1 -1 -1 -

1

c -

1

- 1

???? -1 0 l-l -t
???? 01311 0

2

0-1-1 3 -l
3 0 - 1 - 1 0

3 0

1

a RINCIPAL INPUTS
GATE VALUE

1 0

2 0

3 1

A 0

F 0

t 0

7 1

e o

9 1

1 0 1

1 1 1

12 C

13 0

l A 1

PRINCIPAL OUTPUTS
GATE VALUE
117 0

l 1 3 2

119 t

1 20 1

12 1 2

1 22 3

123 0

1 24 0

2 3 1

FNC OF RUN

r.NQ CF SCF FILE. ACCOUNT: 33232— PRZYEO PC Y = 503, SPC= 537, PG5= 9. CPO

Problem //

4

ACCOUNT: 2 2 2 32- J R 2 Y 30 TRAIN! A Rif CL I 00
SDF CONTROL V»CIR3, OCTAL - S 0 0 1 2 0 00 0 000 . I = 1, Ff
Afi 0V-. C 0 N r F C L WORD IN BLCC.< 1 LOOKS WRONG ?

AS OFF*

TIME USED TO FORM COMPONENTS IS 0

TRACK J

- S. = 0

PJNCHS N LINeS/INCF
:t = f i in_o a r a

FAULT RUN N U v 6 r R 4

PAUL TS

C A T r TYRE CF FAULT
1 INPUT SET TO 0

2 I N~>U T SL 1 TO 0
i Input SET ro 0

4 INPU T SET TO 1

c INP'J T SFi T TO 1

t I NPU l SET TO 1

7 INPUT SET TC 0

c INPU T 3E T TO 0

9 I NPU 7 SET TO l

l C i npu r SF 1 TO 0

1 1 INPU T Sl-T 70 0

1 2 I NPU 1 SET T 0 0

t 2 INPU 1 SKI TO 0

1 4 I NP'J T SE r TO I

12? L INI; 3 OF GATE 44 STUCK- A T—

0

GaTF A SO G N V i
; NT 5

GT IP A C J AC 5 NT PINO
1 2 0 1

2 2 0 2

2 2 0
"3

0. 2 l 4

S 2 l s

t. ?. 1 £

r 2 C J

a 2 C e

9 2 l 9

10 2 C 1 0

1 1 20 1 l

12 2 0 l 2

1 2 2 0 12

1 + 2 l l *

1 5 A r 15

1
fc 4 7 IS

1 ? A c 17

1 a 1 1 i a

1 9 A 12 19

2 0 R
1 orvl

If)

2 1
e. A ?.o ? l

I

9

22 5 6 2 22
23 5 15 22 23
24 8 2 1 23 24
2 = 5 3 15 25
2t> 5 4 e 2 o

27 3 6 27
28 5 25 26 28
29 e 27 28 25
30 e 7 1 30
3 1 5 6 30 3 1

32 c e 2 32
33 c

1 6 32 33
34 e 3 1 33 34
35 1 6 3 35
36 5 4 7 36
37 3 .a 37
38 6 a 5 36 3e
35 9 37 39 35
40 e 5 l 40
4 1 5 1C 40 4 1

42 ft
1 0 2 42

43 5 17 42 43
44 e 4 l 43 1 1 7

45 c 17 3 45
4 b 5 4 9 46
47 -a 1C 47
48 6 45 46 48
45 8 4 7 49 45
50 5 1 1 1 50
5 l 5 1 2 50 5 1

52 3 1 2 2 52
53 c

i a 5 2 53
54 a 5 1 £ 3 54
35 5 1 8 3 55
56 5 4 1 1 5 c

57 3 1 2 57
58 6 e e 56 58
59 6 57 58 55
CO T 25 60
e l 5 2 4 39 6 1

62 5 24 34 62
6 3 5 45 62 6 3

6 4 c 2 4 34 54

6 5 5 4 4 64 t 5

6 6 e 5 5 6 5 66
67 6 60 6 1 o 7

6 a 6 6 3 67 68
6.9 8 6 6 6 9 65
70 c 2 4 34 70
7 l 5 44 70 7 1

72 c 5 4 71 72
7 3 7 l 4 72 72
?4 ft 2 4 34 74
?5 5 4 4 7 4 7 5

76 7 5 4 7 5 7 5

7 7 l 1 2 4 29 77
78 c 8 54 78
79 ft 44 73 75

ft 0 5 24 79 80
ai 5 19 80 3 1

£2 e 44 24 32
83 5 £9 82 83
ft 4 e 19 9 3 34
8*5 t 34 49 85
ftt 5 1 9 85 36
87 c

1 9 39 e 7

ee 6 8 l 64 88
t ee ft 8 39

90 8 87 69 90
9 l 1 1 24 39 9 1

92 5 1 4 £4 92
93 5 4 4 92 93
9 4 c 19 92 94
93 c 4 4 55 95
9 6 8 19 95 96
9 7 5 49 19 9 7

98 t 94 98 98
99 6 9 7 98 9 9

100 1 l 44 45 100
10 i 5 14 54 1 0 1

102 5 1 9 101 10 2

I 03 e J*U

1

19 103
104 8 1 C2 103 1 04
105 1 1 £ 4 59 105
l oe 7 1 4 19 106
107 4 ft 9 1 07
ice 4 7 2 i ce
109 6 1 C7 ica 109
l 1 0 1 1 77 90 1 10

1 1

1

1 1 9 1 99 l 1 l

1 12 1 1 IOC 104 1 1 2

1 1 3 1 1 l C £ 106 1 1 3

1 1 4 C
l 1 C 1 1 1 l 1 4

1 1 5 C
1 1 2 l 1 4 l t 5

1 1 6 e
1 1 2 1 l £ 1 1 6

1 1 7 2 e 9

1 l 8 2 76
1 t 9 2 1 C 9

120 2 1 1 C

12 1 2 1 1 1

122 2 1 12

123 2 1 1 2

124 2 1

1

e

125 22 l 17 44

PIN ASSIGNVCMS
PIN AC JACSM CATS S

1 1 2 C 30 40 50
2 2 2 2 32 42 £ 2

3 2 2 £ 35 45 55
4 4 2 t 3 6 46 5 6

5 5 1 5 20 25
£. 6 2 1 22 2 7

7 7 i e 2 0 36
3 e 2 1 22 3 7 73

I

9 9 17 40
1 0 1 C 4 1 42
1 1 1 1 1 8 50

1 2 1 2 £ 1 52
1 3 l 3 19

1 4 1 4 73 92
1 5 1 5 23 25
1 6 1 6 3 3 35
1 7 l 7 4 3 45
1 8 i e C 1 55
l 9 1 9 £ 1 84
20 20 2 1

2 1 2 1 2 4

22 22 23
23 2 3 24
24 24 6 1 62
25 25 26
26 2 6 2 8

27 27 29
26 26 29
29 29 t C 77
30 3 C 3 1

3 1 3 1 3 4

32 3 2 3 3

33 33 34
34 34 6 2 64
35 3 5 36
36 3 6 38
37 37 39
3 8 3 £ 39
39 39 6 1 £ 7

40 4 C 4 I

4 1 4 1 4 4

42 42 43
43 4 3 4 4

44 126 6 5 7 1

4 5 4 5 46
46 46 4 8

47 47 49
4 e 4 6 4 9

4.9 4 9 6 3 85
50 5 0 £ 1

5 1 5 1 £ 4

52 6 2 c ~

5 3 53 £ 4

54 5 4 7 2 76
ez e G C 56
56 56 £ 8

5 7 5 7 £ 9

5 6 5 6 £ 9

59 59 6 6 8 3

6 0 f 0 £ 7

6 1 6 1 6 7

f 2 6 2 6 3

63 6 3 6 8

6 4 6 4 t 5

6 5 c 5 6 6

t e 1

1

69

4e
47
56
57

0 1 10 6

36 87 94 96

64 70 74 77

70 74 80 82

y l

75 79 82 93

9 7 10 G

78 92 1 0 1 1 C 5

95 103 105

97 102 1 C 3 106

8 5 9 1

95 100

i

i

i

i

67 6 7 68
68 6 6 69
69 69 1 C 7 t l 7

70 7 0 7 1

71 7 1 7 2

72 7 2 7 2

73 73 1 C 6

74 74 7 £

7 £ 7 5 7 6

7 fc 76 1 l 8

77 7 7 1 1 C

78 78 79
79 79 6 C

80 8 C 8 1

8 1 6 1 8 £

82 8 2 £2
83 83 8 4

€4 64 68
65 8 5 €6
86 86 8 9

e 7 8 7 9 C

86 -i 8 89
69 8 9 9 C

90 9 C 1 1 C

9 1 9 1 l 1 1

92 9 2 9 2

93 93 9 4

9* 94 c a

95 9 £ 9 6

96 96 9 €

97 9 7 99
9 6 9 8 99
99 99 1 1 1

100 1 0 C 1 12

101 10 1 1 C 2

102 102 1 04
1 03 102 1 C 4

104 104 1 1 2

1 C £ 1 0£ 1 l 2

106 106 l 12

l C7 l C 7 1 C 9

l CA l C € 1 C9

109 109 1 1 9

1 1 0 l 1 0 l 1 4 1 20
1 l 1 1 1 1 1 1 4 12 1

1 1 2 1 1 2 1 1 £ 122
113 1 1 2 1 1 6 123
1 14 1 1 4 1 1 6

l 1 5 1 1 5 1 16

1 1 6 1 1 t 1 24
1 l 7 44 126

L c V til_ L I NG
Fl_HVr-L -

HCANMNC- SECU -.NC5

85 PLKVEL zz 125 T0PL3V — 125

l 14 12 19 106 12 57 1

1

1 6 50 5 1 10 47 9 17 40 * 1 4 37 7

1 6 3 0 3 1 6 2 / 5 15 20 2 1 4 26 36 46 06 3 2 o 28 2 9 oO 15

38 39 4 S 43 49 55 5 £ 59 1 03 97 37 2 22 23 24 61 67 7 7 32 33
34 74 70 6 4 62 e s (3 c8 9 1 42 43 44 52 53 54 1 05 73 l l 3 123 86
10 1 10 2 l C4 92 1 2 5 93 79 65 71 72 75 76 1 18 62 30 95 33 66 69 l 1 7

1 C7 l 0 C 1 1 2 1 22 96 94 9 3 99 1 1 1 121 34 31 S3 39 90 1 10 120 1 1 4 1 1 5 1 1 6

124 73 1 C 6 ICS 119

Lf 4 0 Kt_

1 2 2 4 5 6 7 8 9 10

21 22 2 2 24 2 5 26 27 28 29 30
4 l 42 4 2 4 4 4 5 46 47 43 4 9 SO
6 1 C2 6 3 6 4 6 5 66 67 63 69 70
e i £2 £ 3 6 4 35 9 © 87 88 39 90

101 1 02 1 C 2 t 0 4 10 5 106 107 ICE 109 1 10

23 73 4 e 2 4 3 1 53 12 77 33 70
55 54 c e 6 5 3 7 37 33 3 £ 58 23
72 7 l 7 2 1 02 44 44 45 45 10 2 1 1

57 67 6 8 £ 3 9 3 99 63 99 10 1 89
t 13 9 7 l l 1 1 1 3 30 1 1 4 11 5 1 1 4 1 l 5 l 16
32 32 83 1 03 7 8 73 124 124 0 1 18

NO VEE POP 1 E S T S = 1

1 1 1 2 l 3 1 4 1 5 1 6 1 7 1 3 l 9 20
2 l 32 33 34 35 36 37 33 39 40
5 1 52 53 5*+ 55 56 57 5 8 59 to
71 72 73 74 75 76 77 73 7 9 30
9 1 92 93 94 95 96 97 98 9 9 1 uO

1 1 1 1 l 2 l 1 3 1 1 4 1 l 5 1 l 6 l 1 7

24 7 3 4 1 22 54 60 7 l 74 1 12 2 9

6 1 60 6 l 95 4 1 4 1 42 42 69 1 7

75 74 75 92 47 47 43 43 93 5 7

90 122 123 91 92 0 1 1 6 37 95 1 1 2

109 3 6 106 1 07 1 05 1 0 7 103 1 03 109 103
1 1 a 1 1 9 120 1 1 9 1 2 C 0 35

NU = C

TIME F CR VECTOR COMPUTATION IS 90

T5ST NUME4R 1

PIN VALUES
P IN 1 2 3 4 5 6 7 8 9 10 1 1 l 2 1 3 1 4 1 5 l 6 t 7 18 19 20

7 ? ? 7 22 2 - 24 25 26 27 2 8 29 30 31 32 33 34 35 Jt> 37 33 39 40 41

7 7 7 * 43 44 45 46 47 43 49 50 8 1 5? 53 54 55 5 6 67 58 59 cO ii l 62

???? 6 4 6 5 6 6 6.7 63 69 70 71 72 73 74 75 7 o 7 7 78 7 } 80 8 1 32 33
7 ? ? T j?

= E 6 67 83 89 90 9 1 92 93 94 95 96 97 9 8 9 9 l 00 l 0 l 1 02 1 03 1 04
7 77 1 1 C 6 1 C 7 103 1 C9 l 10 1 1 1 1 12 1 1 2 1 1 4 1 15 1 16 l l 7

VALUE: C C 0 1 1 l 0 0 l 0 0 0 0 1 0 t 0 1 1 0

7 77 7 C 0 I 0 1 1 1 0 0 C 0 0 1 0 0 0 0 1 0 0

7 7 7? c 3 0 l 0 l 0 0 0 0 0 1 0 0 0 0 1 0 1 l

7 77? 1 2 3 l 1 0 l 3 3 2 1 3 2 1 0 0 0 0 •j
3

7 7 7 7 c 0 1 3 T 0 0 1 3 3 3 J 0 3 2 3 1 i 1 0

? ??? c 1 J 1 l 2 3 0 2 0 0 1

PP INCIPAL INPUTS
GATE VALUE

1 0

2 0

2 C

4 l

5 l

6 1

7 0

3 0

9 l

1 0 0

t 1 0

12

0

13 0

14 1

PRINCIPAL CLTFUTS
GATE VALUE
117 0

113 2

1 1<3 l

1 20 l

12 1 2

122 3

123 0

1 24 G

cNO CF PUN

END CF S CF FILE ACCOUNT: 33232— PR2Y EO PCY = 33 6 » 5PC = 36^i P 33 — 6. CRD

Problem #5

ACCOUNT: 33232—°R ZYBO TRAINS A REEL ! 24 TRACK S 7 BUNCH! N LINES/INCH
SDF CONTROL WCRDi OCTAL - 500130000000. I = l, FT = S. P * 0 . CT = f IEL9ATA
ABOVE CONTROL '*0R0 IN BLOCK 1 LOOKS rfRONG 7 ? 7 ? 7 7 7 7 7 7 7 7 7 7 7 7 ? 7

SDFF

TIME USED TO FORM COMPONENTS IS 0

FAULT RUN NUMBER 5

FAULTS

GATE TYPE OF FAULT
125 LINE 1 OF GATE 24 STUCK-AT-0

GATE A SS IONMENTS
GT TP ACJACENT PINS

1 1 1

2 1 2
•3

1 3

4 1 4

5 l c

6 1 6

7 1 7

6 1 a

9 1 9

10 1 1 0

1 1 1 1

1

12 1 1 2

13 1 1 3

14 1 1 4

15 4 s 15
16 4 7 1 6

1 7 4 9 17
1 8 4 1 1 ia
1 9 4 13 1 9

20 c 1 c 20
21 5 6 20 21
22 5 6 2 22
23 5 1 5 22 23
24 a 1 17 23 24
25 5 3 IS 25
25 c 4 5 26
27 3 6 27
2e 6 2 5 2€ 28
29 B 27 28 29
30 K 7 1 30
31 5 e 30 3 1

32 5 6 2 32
33 c 1 6 32 33
34 a 3 l

n -a 34
35 5 1 6 3 35

36 5 4 7 36
37 3 e 37
38 6 35 36 38
39 8 37 3e 39
40 5 9 l 40
41 5 10 40 4 l

42 c 10 2 42
43 5 17 42 43
44 8 4 1 43 44
45 5 17 3 45
46 5 4 9 46
47 3 10 47
48 6 45 46 48
49 8 47 48 49
50 5 1 1 1 50
51 5 1 2 50 51
52 5 1 2 2 52
53 5 1 8 52 53
54 8 5 1 53 54
55 5 i e 3 55
56 5 4 1 1 56
57 3 1 2 57
58 6 5 5 56 58
59 8 57 58 59
60 3 29 60
61 5 24 39 61
62 5 24 34 62
63 5 49 62 63
64 5 24 34 64
65 5 44 64 65
66 5 59 65 66
67 6 60 6 1 67
68 6 63 67 68
69 a 66 68 69
70 5 24 34 70
71 5 44 70 71
72 5 54 7 1 72
73 7 1 4 72 73
74 5 24 34 74
75 5 44 74 75
76 7 54 75 76
77 1 1 24 29 77
78 5 8 54 78
79 «5 44 78 79
80 5 24 79 80
81 5 19 30 81
82 5 44 34 82
33 5 59 82 33
84 5 1 9 83 84
85 5 34 49 35
86 5 19 8 5 86
87 5 19 39 37
88 6 8 1 84 88
89 6 86 88 89
90 8 87 89 90
91 1 1 34 39 9 1

92 5 1 4 54 92
93 5 44 92 9 3

94 c 19 93 94
95 5 44 59 95
96 5 19 95 96
97 5 49 19 97
98 6 94 96 93
99 8 97 98 99

1 00 1 1 44 49 100
101 5 1 4 54 101
1 02 5 19 101 102
1 07 5 59 19 103
1 04 3 1 02 103 104
1 05 1 1 54 59 105
1 06 7 14 19 10 6

1 07 4 69 107
1 08 4 73 103
1 09 6 107 1 C 8 109
1 10 1 1 77 90 no
1 1 1 1 1 9 1 99 i i i

1 12 1 1 10C 104 112
1 13 1 1 105 106 113
1 14 5 1 1 0 1 1 1 1 1 4

1 1 5 5 1 1 2 1 1 4 1 l 5
116 c 113 1 1 5 116
1 17 2 69
1 18 2 76
1 19 2 1 C9
1 20 2 1 1 0

121 2 1 1 1

122 2 1 1 2

1 23 2 1 1 3

124 2 1 1 6

1 25 22 2 1 117

PIN ASSIGNMENTS
PIN ADJACENT GATES

1 1 20 30 40 50
2 2 22 32 42 52
3 3 25 •a e 45 55
4 4 26 36 46 56
c 5 1 5 20 26
6 6 2 1 22 27
7 7 16 30 36
8 8 3 1 32 77 78
9 9 17 40 46

10 10 4 1 42 47
1 1 1 1 i e 50 56
12 1 2 5 1 52 57
13 13 19
14 1 4 73 92 101 106
15 1 5 23 25
16 16 3 3 35
17 17 43 45
18 18 e -3 c e

19 19 a l 64 36 87
20 20 2 1

21 2 1 125
22 22 23

94 9 6 97 102 102 106

23 23 24
24 24 6 1

25 25 2e
26 26 28
27 27 29
28 2e 29
29 29 60
30 30 3 1

31 31 34
32 32 33
33 33 34
34 34 6 2

35 35 38
36 36 38
37 37 39
38 38 39
39 39 6 1

40 40 4 1

41 41 4 4

42 42 4 3

43 43 44
44 44 65
45 45 48
46 46 48
47 47 49
48 4e 49
49 49 63
50 50 5 1

51 51 54
52 52 c 2

53 53 54
54 54 72
55 55 5 8

56 56 58
57 57 59
58 58 59
59 59 66
60 60 67
61 6 1 67
62 62 63
63 63 6 S

64 64 65
65 65 66
66 66 69
67 67 68
68 69 69
69 69 107
70 70 7 1

71 71 72
72 72 73
73 73 1 C 8

74 74 7 5

75 75 76
76 76 1 1 8

77 77 1 1 C

78 78 79
79 79 SC
80 80 8 1

i

64 70 74 77

70 74 80 82 85 <31

9 1

75 79 82 93 95 100

97 100

78 92 101 105

95 103 105

62

77

64

e7

71

85

76

83

1 17

I

81 61 8 8

92 82 e 2

93 83 84
84 84 ee
8 5 85 86
86 86 e9
97 87 9 C

88 88 69
69 89 90
90 90 1 l C

91 91 1 1 1

92 92 93
93 93 94
94 94 98
95 95 96
96 96 9 8

97 97 99
9e 98 99
99 99 1 1 1

100 100 1 1 2

101 101 102
102 1 02 1 04
1 03 1 03 104
1 04 104 1 1 2

105 1 05 1 1 3

1 06 l 06 1 1 3

1 07 l 07 1 C 9

108 105 109
1 09 109 1 1 9

1 10 1 1 0 1 l 4 120
1 1 1 1 1 1 1 1 4 121
1 1 2 1 1 2 1 1 £ 122
1 13 1 1 3 1 16 123
1 14 1 14 1 1 £

1 1 5 1 1 5 1 1 6

1 16 1 16 124
1 17 1 25 24

LEVELLING
CL EVF.L =

SCANNING SECU ENC
125 24 77 1 1 0 120 1 1 4 1 15 l 16 124
66 62 63 61 67 63 69 1 17 107
22 27 6 28 87 89 91 39 99
88 97 9 8 1 02 1 03 35 36 85 49
80 83 93 95 59 57 58 55 56
16 32 40 17 42 1 0 7 9 92
12 1 1

leadfl
1 2 4 5 6 7 8 9

21 22 2 3 24 25 26 27 28 29
41 42 43 44 45 46 47 48 49
6 1 62 63 6 4 65 66 67 68 69
81 82 8 3 84 85 36 87 88 89

1 01 1 02 1 C 3 1 0 4 105 106 107 108 109

31 TOPLEV = 122

75 76 1 1 8 70 71 72 73 1 08 64 6 5

1 19 21 23 90 l 1 1 l 1 2 1 1 3 60 29 20
104 105 106 37 38 25 15 26 5 86
48 45 46 8 1 84 94 96 1 9 1 3 10 1

4 79 32 34 44 31 33 41 43 30
78 54 51 53 8 50 1 18 52 2

1 1 12 1 3 1 4 1 5 1 6 1 7 1 8 19 20
3 1 32 33 34 35 36 37 39 39 40
5 1 52 53 54 55 56 57 59 59 60
71 72 73 74 75 76 77 79 79 80
91 92 93 94 95 96 97 98 99 100

111 112 113 114 115 116 117

74
109
100
47
3

1 4

10
30
50
70
90

1

1

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 23 2 6 20 2 1 27 26 27 29 15 16 1 7 1 8 1

1

12 0 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 30 30 0 6 0 0 0 7 8 0 2

NUMBER OF TESTS = 1

TIME FOR VECTCR COMPUTATION IS 27666
NL = 4C 7 26

TEST NUMBER

PIN VALUES
PIN 12 3

1

4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20
77? ? 22 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41
???* 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 53 59 60 6 1 62
???? 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 30 81 82 33
7 ? ? T £5 £6 37 83 £9 «0 91 92 93 94 95 96 97 98 99 1 00 101 102 1 03 1 04
7771

VALUE
106 1 C 7

l 0

108
1

1 0«
1

110
1

1 1 1

1

1 12

0

1 13

1

114 115
0 1

1 16
0

1 1 7

1 0 1 0 1 1 1 1 1

7777 0 0 2 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0

77? 7 0 1 1 0 1 l 0 0 0 0 0 t 1 0 1 1 0 0 0 2

7777 2 2 0 0 0 1 2 2 2 3 2 2 3 2 1 1 1 1 1 0

7777 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0
???? 0 0 2 2 2 1 1 1 2 2 2 3

PRINCIPAL INPUTS
CATE VALUE

1 1

2 0

3 1

4 1

5 1

6 1

7 0

8 I

9 0

10 1

1 1 0

12 1

13 0

14 1

PRINCIPAL OUTPUTS
CATE VALUE

1 17 1

113 3
! 1 IP 2

120 2

|

121 l

122 1

123 1

I
124 2

!:!

END OF RUN

END OF SC P FILE. ACCOUNT! 33232-PRZY80 PCY = 322. SPC= 369, PGS= 6, CRD

Problem #

6

ACCOUNT! 33232—°RZYBO TRAIN : A REEL t 24
SOF CONTROL WORD. OCTAL - 500 l 30000000 , I = 1.

ABOVE CONTROL WORO IN BLOCK 1 LOOKS WRONG
SCFF*

track: 7 punch: n lines/inch
FT = Si P = 0. CT = FIELDATA

TIME USEO TO FORM COMPONENTS IS 0

FAULT RUN NUMBER

F AULTS

GATE TYPE OF FAULT
125 LINE 1 OF GATE
126 CROSS WIRE ANO BETWEEN LINE

ANO LINE

24 STUCK—A T -0

3 OF GATE
3 OF GATE

24
29

G *TF ASSIGNMENTS
GT TP ACJACENT PINS

1 1 1

2 1 2

3 1
-a

4 1 4

5 1
c

6 1 *

7 l 7
p 1 8

9 1 9

10 1 1 C

l 1 1 1 1

12 1 1 2

13 1 1 3

14 1 1 4

IF 4 c 15
16 4 7 1 6

17 4 9 17
IF 4 1 1 is
19 4 l 3 l 9

20 5 1
c 20

21 5 6 20 2 1

22 5 6 2 22
23 5 1 5 22 23
24 a 1 17 23 1 1 8

25 5 3 15 25
26 e 4 e 26
27 3 6 27
28 6 2 5 26 23
29 a 27 28 1 1 9

30 5 7 l 30
31 5 e 30 3 1

32 s e 2 32
33 e

1 6 32 33

34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
e4
£5
86
e7
88
89
90
91

8 31 3 3 34
e 1 6 3 35
5 4 7 36
3 6 37
6 rj e 36 38
8 37 38 39
5 9 l 40
5 1 0 40 4 t

5 1 C 2 42
5 17 42 43
8 4 1 43 44
5 17 3 45
5 4 5 46
3 1 C 47
6 4 5 46 48
8 47 48 49
5 1 1 1 50
5 l 2 50 51
c 1 2 2 52
c IS 52 53
8 5 1 53 54
5 1 8 3 55
5 4 1 1 56
3 1 2 57
6 e e 56 58
8 57 se 59
3 25 60
c 24 39 61
5 24 34 62
5 49 62 63
5 24 34 64
5 44 64 65
5 59 65 66
6 60 61 67
6 63 67 68
a 66 6e 69
5 24 34 70
5 A 4 70 71
5 54 71 72
7 1 4 72 73
5 24 34 74
5 A A 74 75
7 5 A 75 76

1 1 2 A 29 77
5 S 54 78
5 44 78 79
5 34 79 80
5 1 5 eo 81
e 44 34 82
c in S 2 83
5 1 9 S3 84
5 34 49 85
c 1 5 8 5 86
5 15 39 87
6 8 1 S 4 88
6 S 6 se 99
8 87 85 90

1 1 34 39 9 1

92 5 1 4 54 92
93 5 44 92 93
94 5 1 9 93 94
95 5 44 59 95
96 c 19 95 96
97 5 49 19 97
98 6 94 96 98
99 8 97 98 99

100 1 1 44 49 100
1 01 5 14 54 101
1 02 5 1 9 1 0 1 102
1 03 5 59 19 103
1 04 8 102 1 03 104
105 1 1 5 4 59 105
1 06 7 14 19 106
1 07 4 6 9 107
1 08 4 73 ice
1 09 6 107 1 C 8 109
1 10 1 1 77 90 110
1 1 1 1 1 9 1 99 11 1

1 12 1 1 10C 104 1 l 2

1 13 1

1

105 106 113
1 14 5 1 1 0 1 1 1 114
1 15 5 1 1 2 114 l 1 5

1 16 5 1 13 115 1 l 6

117 2 69
1 18 2 76
1 19 2 109
120 2 1 1 0

121 2 1 1 l

122 2 1 1 2

1 23 2 1 13
124 2 1 1 6

1 25 22 2 1 117
126 24 1 1 e 1 19 24

PIN ASSIGNMENTS
°IN ADJACENT GATES

1 1 20 30 40 50
2 2 22 32 42 52
3 3 25 35 45 55
4 4 26 36 46 56
e e IS 20 26
6 6 2 1 22 27
7 7 1 6 30 36
8 3 31 32 37 78
9 9 17 40 46

10 10 4 1 42 47
1

1

11 i e 50 56
12 12 5 1 £2 57
13 13 19
14 14 73 92 10 1 106
IS 15 23 25
16 16 3 3 35
17 17 43 45
18 18 e t 5 S

1 9 1 9 ei 6 4 86 87 <57 102 103 106

25
23
24
e 1

2e
2 e

2 ?

29
eo
2 1

34
33
24
€ 2

3 8

38
29
39
6 1

4 1

44
43
44
6 5

4e
48
49
49
(2
5 1

84
C "3

54
72
58
58
59
59
66
67
€7
63
6 8

6 5

66
69
68
69
.07

7 1

72
73

. ca
75
76
1 8

. 1 0

62 64 70 74 77

77

64 70 74 80 82 85 91

87 91

71 75 79 82 93 95 100

85 97 100

76 78 92 101 105

83 «5 103 105

1 17

78 78 79
79 79 80
80 80 P 1

€1 PI 8 8

92 82 83
€3 93 € 4

84 84 88
85 85 86
86 86 89
87 P7 9 C

se 88 89
89 89 90
90 90 1 1 0

91 91 111
92 92 93
93 93 94
94 94 98
95 95 9 6

96 96 9 8

97 97 99
98 98 99
99 99 1 1 1

1 00 100 1 l 2

101 1 01 1 02
102 1 02 104
1 03 1 03 104
104 104 1 1 2

105 1 05 l 13
106 106 1 1 3

1 C7 1 07 1 09
1 CP ioe 109
1 C9 109 1 1 9

1 10 1 10 1 14 120
1 1

1

1 1 l 1 1 4 121
112 1 12 1 1 5 122
1 13 1 l 3 1 16 123
1 14 1 14 1 1 5

1 15 115 1 1 6

1 16 1 16 124
1 17 1 25 24
1 18 24 126
119 29 126

LEVELLING
FLEVEL =

SCANNING SECUENCS
1 25 24 126 60 77
64 65 €6 62 63
20 22 27 6 28
86 F8 97 98 102

1 01 80 83 93 95
30 16 3 2 40 17

2 12 1 1

LFAOFL
1 2

-3

I

3 FLEVEL =

110 120 1 14 1 1 5 116
61 67 68 69 117
37 89 91 39 99

103 35 36 35 49
59 57 58 55 56
42 10 7 9 92

6 7 8 c 10

33 TOPLEV 2

124 74 75 76 1 18
1 07 109 1 1 9 21 23
l 00 104 105 1 06 37
47 43 45 46 81
3 4 79 82 34

1 4 78 54 51 53

1 l 1 2 1 3 1 4 l 5

123

70 71 72 73 108
29 90 1 1 1 1 l 2 1 1 3

38 25 1 5 26 5

84 94 96 19 l 3

44 31 33 4 l 43
8 50 1 1 8 52

1 6 l 7 1 8 1 9 20

21 22 23 24 25 26 27 28 29 30 3 1 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 £0 £1 52 £3 54 55 56 57 59 59 60
61 6 2 63 64 65 66 67 69 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 35 86 87 89 89 90 91 92 93 94 95 96 97 98 99 100

l 01 1 02 1 C3 1 C 4 105 106 107 ioe 109 110 1 1 1 1 l 2 1 1 3 l 1 4 1 l 5 1 16 1 17 113 l 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 C 26 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27

27 25 28 22 23 29 29 29 31 17 l 9 19 20 13 1 4 0 6 0 0 0
0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 32 32 0 8 0 0 0 9 1 0 0 2 3 0

JUMPER OF TESTS = 1

TIME POR VECTOR COMPUTATION IS 196438
NL = 223031

TEST NUMBER 1

PIN VALUES
PIN 1 2 3 4 5 € 7 8 9 10 l 1 12 13 l 4 15 16 17 18 1 9 20

???? 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
???* 43 44 45 46 47 48 49 50 5 1 52 53 54 55 56 57 58 59 60 6 1 62
77?? 6 4 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 8 1 82 33
7 ? 7 T U)vu 96 87 88 89 90 91 92 93 94 95 96 97 98 99 1 00 101 1 02 1 03 1 04
7771 1 C6 1 C 7 108 109 1 10 1 1 1 1 12 l 13 1 1 4 1 15 116 1 17 1 1 8 1 1 9

VALUE 0 0 1 1 1 0 0 1 0 l 0 1 0 1 0 1 l I 1 0

7777 0 0 3 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0

7777 0 1 1 0 1 l 0 0 0 0 0 1 l 0 1 1 0 0 0 3

???? 3 3 0 0 0 1 3 3 3 2 3 3 2 3 1 1 1 1 1 0

777? c 0 0 1 1 0 1 1 1 1 0 0 0 l 0 l 1 1 0 0

???? 0 0 3 3 3 1 1 1 3 3 3 0 1 0

PRINCIPAL INPUTS
SATE VALUE

1 0

2 0

3 1

4 l

5 1

6 0

7 0

8 1

9 0

10

l

1 1 0

12 1

13 0

14 1

PRINCIPAL OUTPUTS
GATE VALUE

1 17 1

118 2

119 3

1 20 3

121 1

122

1

1 23 1

1 24 3

ENO OF RUN

END of SOF file. ACCOUNT: 33232-»RZY80 °CY = 327, SPC= 379, °GS = 6, CP9

NBb .

X

J4A (REV. 2-gc)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 83-2794

2. Performing Organ. Report No, 3. Publication Date

September 1983

4. TITLE AND SUBTITLE

ON GENERALIZING THE D-ALGORITHM

5. AUTHOR(S)

J. Scott Provan and Paul Domich
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON. D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

10. SUPPLEMENTARY NOTES

H Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bi bliography or literature survey, mention it here)

We consider in this paper the d-algorithm of J. P. Roth, which tests for

specific faulty behavior in the integrated circuit. We develop a formal and

general mathematical description of the algorithm, which allows a large degree

of flexibility and extension in its implementation. We include a subsequent

FORTRAN coding of such an extended d-algorithm, along with some sample testing.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

backtrack; d-algorithm; fault-specific testing; VLSI

13. AVAILABILITY

X U nl i mi ted

| j

For Official Distribution. Do Not Release to NTIS

~] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

55 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

126

15. Price

$ 14.50

USCOMM-OC 8043-P80

